V TESTIMONY OF ASTRONOMERS

Previous

That there may be types of life of some kind on Mars is, I should think, quite likely.

Sir Robert Ball.

In the following chapter are presented abstracts from memoirs, communications, etc., of a few among the many astronomers and observers who have recognized the markings on the planet, and, in many cases, have made drawings of them. Before presenting these few brief records, I have compiled, from Camille Flammarion's great work on Mars, the names of those astronomers whose drawings he reproduces in this monograph, for such it is. A brief examination of Flammarion's volume will give one an idea of the extent and variety of work which has already been accomplished in interpreting the surface features of Mars, and the number of astronomers who have made contributions to the subject.

Flammarion divides these observations into three periods; the first, beginning with the rude drawing of Fontana, in 1636, followed by Huyghens, in 1659, Cassini, in 1666, and many others up to Harding, in 1824. In this period the drawings were rude, though a number of the more conspicuous features were established, and above all, the existence of what was interpreted as snow in the white polar caps. Astronomically many points were determined, such as an approximation of the period of revolution, the distance of Mars from the Sun, the diameter of the planet, its mass, the inclination of its axis, the eccentricity of its orbit, its period of rotation, etc.

The second period begins with the remarkable work of Beer and MÄedler, in 1830 and subsequent years. To them belongs the honor of being the first astronomers to make a chart of the planet. An advance standard was set for future studies, and the work which followed revealed details in the surface markings never before suspected. The second period, from 1830 to 1877, includes the observations and drawings of Beer and MÄedler, 1830; Sir John Herschel, 1830; Galle, 1837; Warren de la Rue, 1856; Webb, 1856; Secchi, 1858; Liais, 1860; Schmidt, 1862; Lockyer, 1862; Phillips, 1862; Lassell, 1862; Knott, 1862; Kaiser, 1862; Dawes, 1864; Franzenne, 1864; Williams, 1867; Proctor, 1867; Lahardeley, 1871; Burton, 1871; Wilson, 1871; Gledhill, 1871; Flammarion, 1873; Terby, 1873; Green, 1873; Trouvelot, 1873; Lohse, 1873; Holden, 1875.

The third period extends from 1877 to 1892, when Flammarion published his book. The following drawings are given: Flammarion, 1877–88; Paul and Prosper Henry, 1877; Neisten, 1877–79–81–88; Terby, 1877–79–88; Van Ertborn, 1877; Cruls, 1877; Dreyer, 1877–79; Lohse, 1877–79–83–84; Green, 1877; Schiaparelli, 1877–79; Maunder, 1879; Konkoly, 1879; Boeddicker, 1881–84; Burton, 1882; Trouvelot, 1884; Knoble, 1884; Denning, 1886; Perrotin and Thollon, 1886; Proctor, 1888; Perrotin, 1888; Holden and Keeler, 1888; Wislicenus, 1888–90; W.H. Pickering, 1890; Williams, 1890; Giovannozzi, 1890; Guillaume, 1890.

It is impossible to follow these various drawings of Mars from the earliest ones of the first period, many of little value, to the slow yet certain advance as seen in the more detailed drawings of the second period, without realizing the gradual improvement of the telescope, coupled with a greater number of observers endowed with better eyesight and impelled by deeper interest in the work. In the third period, culminating with the great work of Schiaparelli, and confirmed by the remarkable observations of Perrotin and Thollon, we see the results of still more arduous devotion to the work; a great advance in telescopes, with better definition, and, in the case of the observations at Nice and Milan, a steadier atmosphere through which to observe. Flammarion brought his work up to 1892.

Lowell's work on Mars, though of a kind with Schiaparelli, is, in every circumstance accompanying it, so remarkable that we may well consider the standard now set by him as the beginning of another period; and this period will fix a standard which will consist in securing observers who, in the language of Sir David Gill, have a special faculty, an inborn capacity, a delight in the exercise of exceptional acuteness of eyesight and natural dexterity, coupled with the gift of imagination as to the true meaning of what they observe. With this standard established, there must also go a perfect telescope for definition, mounted on an elevation a mile and a half or more above the level of the sea, in a region of the clearest and steadiest atmosphere in the world.

One cannot help reflecting on these various drawings presented in Flammarion's work, and wondering what the results would have been if all these astronomers could have had telescopes as incomparable as that at Flagstaff, perched on some high mountain peak with a clear and steady atmosphere continuous for weeks, and, superadded to all these advantages, independent fortunes to enable them to transport their telescopes thousands of miles south when a favorable opposition of Mars occurred at a low altitude.

The astronomers who have advanced certain theories to explain the markings may be counted as admitting their existence, whatever they may be. Among the other astronomers to be referred to are, first, those who admit the markings, and have in all likelihood seen them; second, those who have observed and made drawings of the markings; and, third, those who have drawn them and admit, or at least do not deny, their artificiality.

Miss Agnes M. Clerke, an astronomical writer of great merit, who has written a most lucid and comprehensive "History of Astronomy in the Nineteenth Century," says: "The canals of Mars are an existent and permanent phenomenon." Mr. Thomas Lindsay, of Toronto, read some notes before the Astronomical Society of that city in regard to the phenomenon of the so-called doubling of the canals and the explanation advanced that it was due to errors in focusing. "It had been stated by several English observers that, by racking the eyepiece within or without the focus, all the phenomena might be produced." In the case of Mars, however, he asks: "How is it possible that all the observers had their telescopes unadjusted, and, if any one had, would he not be immediately aware of it?" Mr. Lindsay thought that the theory was too obviously opposed to the simplest kind of common sense to merit a moment's consideration.

Mr. John A. Patterson, in his Presidential address before the Astronomical Society of Toronto, in speaking of Mars, said the discoveries rest on the bed rock of scientific evidence; and, after speaking of the supposed spectroscopic evidence that there was no atmosphere in Mars, refers to the polar snow caps, their melting, and the lines of vegetation that are supposed to mark the margin of the canals, and he asks: "Is it possible that all these may be consistent with no vapor floating above the surface? Is it sound philosophy to conclude that the condition of things on our own little world gauges the possibilities and relations that exist in our sister world? Dame Nature does not turn out all her products in one pattern."

Mr. Denning, in the "Astronomische Nachrichten," No. 3926, gives the result of his observations on Mars in 1903. He says the canals, without doubt, are objective features; changes in the appearance of these markings he attributes to vaporous condensations. One rotation period of the planet satisfies the observation of all the markings, thus proving them to be definite features of the planet's surface rather than drifting vapors such as are seen when observing Jupiter and Saturn. In spite of these admissions Mr. Denning, in 1905, while repeating his convictions as to the objectivity of the canals, denied their sharp outline. Of the ten canals he drew, eight were discovered by Schiaparelli, and two were discovered by Lowell. Denning observed these lines with a ten inch reflector. Schiaparelli compared them in sharpness to lines of a steel engraving. It rests with the reader to judge who is most likely to be correct in his description of the character of the lines?—?Mr. Denning with a ten inch reflector, in a poor atmosphere, or Schiaparelli and Lowell, with a twenty-six and a twenty-four inch refractor, respectively, in a far superior atmosphere.

Among the many who have seen and drawn the canals comes first, of course, Professor Schiaparelli, the discoverer of them. It is only necessary to state here that he first detected these enigmatical markings, which he named canali, in 1877. In the opposition of 1879, he not only confirmed the discoveries of 1877, but added new canali, and for the first time saw the curious process of doubling, or gemination.

Astronomers in various parts of the world searched in vain for these markings, and despite the exalted character and remarkable work of the distinguished Italian in other lines of astronomic research, it was feared that, in this instance, Schiaparelli had been the victim of an hallucination. It is true that from the time of Huyghens, in 1659, a few astronomers, such as Secchi, Schroeter, Kaiser, and Dawes, have detected and drawn a few faint lines which seemed to be identical with the canali of Schiaparelli. It was not until 1886, however, that Perrotin and Thollon with a twenty-nine inch refractor of the Nice Observatory, first began to confirm the discoveries of Schiaparelli, and since that time observers in various parts of the world have detected and drawn these remarkable lines. The cumulative testimony of these men as to the veritable existence of these markings cannot be set aside.

It seems strange that nine years should elapse before an astronomer with an interest in the subject, coupled with an acute vision and the patience to observe assiduously, should arise to confirm the existence of these markings, but in another chapter I have called attention to the little interest astronomers have manifested in planetary markings of any kind. It has been shown elsewhere that acute vision, with a clear and, above all, a steady atmosphere, are the chief essentials in making out the markings. It is curious to note the attitude of some astronomers, who, having seen the canals and even drawn them, denied their veritability. Their explanations cover "illusions due to the property of light itself, the inability of the eye to maintain its mechanism of accommodation, the behavior of air waves, temporary alteration of the focus of the eye, undetected astigmatism," etc., etc. But, to return to the astronomers who have drawn them. On the unfavorable opposition of 1888, Schiaparelli declares that "the canali had all the distinctness of an engraving on steel, with the magical beauty of a colored engraving." He furthermore says: "As far as we have been able to observe them hitherto, they are certainly fixed configurations upon the planet, the Nilosyrtis has been seen in that place for nearly one hundred years and some of the others for at least thirty years."

In this connection it is interesting to quote from Schiaparelli who, until many years after he discovered the canals of Mars, had no doubt of their natural origin. As late as 1893, he still considered them natural. In speaking of the canals, he says: "It is not necessary to suppose here the work of intelligent beings; and in spite of the almost geometric appearance of their whole system, for the present we incline to believe that they are product of the evolution of a planet, much as on the Earth is the English Channel, or the Channel of Mozambique." This extract may be found in a memoir in "Natura ed Arte," 1893, page 22. On page 24 of the same memoir Schiaparelli illustrates the elasticity of his mind and a thoroughly unprejudiced attitude by saying: "Their singular aspect, and the fact that they are drawn with absolute geometric precision, as if they were the product of rule and compass, have induced some people to see in them the work of intelligent beings, inhabitants of the planet. I should be very careful not to combat this supposition, which involves no impossibility." (The italics are ours.) His comparison of the Martian lines with the English Channel and the Channel of Mozambique, if he means any resemblance in form and not in the manner of formation, is most unfortunate, for on the whole face of the Earth he could not have mentioned surface features more totally unlike any feature of the Martian surface, as drawn by him, than these two channels: the English Channel, 100 miles wide at its mouth and 200 miles long, tapering to the Straits of Dover; the Mozambique Channel, hour-glass shaped, 1,100 miles long, and, at its narrowest part, 260 miles wide, and at either end nearly 700 miles wide. Had he suggested the Red Sea, 1,200 miles long, or the Straits of Malacca, 350 miles long, a nearer resemblance to the canals of Mars might have been seen, though even here it would be impossible to find their counterparts in Mars. These channels are merging with the ocean, are nearly half the width of their length, and enlarge at both ends, while the canali of Mars run for hundreds of miles as straight as ruled lines. How slight the resemblance is may be appreciated by comparing the following figure of the Earth (Fig. 1), upon which the Red Sea, the English and the Mozambique Channels and the Straits of Malacca are indicated.


Fig. 1.

In 1897 Schiaparelli becomes still more convinced of their artificiality. In his Memoir XXV, in the Reale Academia del Lincei, in speaking of the canals, he says: "This whole arrangement presents an indescribable simplicity and symmetry which cannot possibly be the work of chance." In a letter to Mr. Lowell, dated December 4, 1904, he writes: "Your theory of vegetation becomes more and more probable." Mr. A. Stanley Williams, in the "Observatory" for June, 1899, in a paper entitled "Notes on Mars," described the appearance of certain canals, regions, etc., in great detail. He notices that at the crossing of the canals a little dark spot occurs, a feature, he says, which was first elucidated by Professor Lowell in 1894. Mr. Williams also noticed the black streak bordering the northern snow cap, which Mr. Lowell in his book on Mars has interpreted as a body of water resulting from the melting snow.

In the Quarterly Journal of the Astronomical Society of Wales, the Rev. Theo. E.R. Phillips publishes an excellent drawing of Mars in color. In this drawing he shows a large number of regions, a number of canals, and other features which, he says, "came out with the clearness and sharpness of an engraving, and bore no resemblance to the 'diffused streaks' or amorphous smudges one sees for the canals in imperfect seeing." In this drawing the polar snow caps show with remarkable vividness.

Professor W.H. Pickering, in a continuous record of observations on Mars, published in the "Annals of the Lowell Observatory," records under August 20: "The dark north canals are also noticeable, and, had they looked as they now do, could not possibly have been missed on the 16th."

Dr. Phil. Fauth has, with a seven inch objective, drawn and published sixty-three drawings of Mars in which a great many canals are shown, a list of which he presents in his memoir on the subject.

The lamented Perrotin, for some time Director of the Nice Observatory, in company with M. Janssen, at Meudon, observed Mars through the great equatorial (32-2/3 inch), and published the results in the "Comptes Rendues" (Vol. CXXIV, No. 7). He describes the several zones, the northern equatorial zone "being more particularly the zone of the extraordinary canals, the discovery of which we owe to Schiaparelli, and to which we ourselves, by our publication, in 1886, called the attention of the astronomical world."

The London "Nature," March 17, 1904, in noting the death of M. Henry Perrotin, speaks of him as one of the ablest advocates of astronomical science. He devoted much time to Mars. "Aware that he was working at the extreme limit of visibility, and knowing the tendency for self-deception to creep in and impair the value of such delicate observations, he sought opportunities of making similar measures and records with different instruments, and under varied conditions, in order to remove, so far as possible, the evils of bias and partiality from the results of his researches."

Dr. Terby of Louvain, in a memoir entitled "Physical Observations of Mars," a translation of which appeared in the "Astronomical and Astrophysical Journal," No. 106, identifies many of Schiaparelli's canali and other details depicted in Schiaparelli's map of Mars. In conclusion Dr. Terby says: "After what we have seen we dare affirm that henceforth the progress of areography will be in the hands of those alone who, freeing themselves from the shackles of doubt, will resolutely engage in the way traced by the celebrated astronomer of Milan. A new era has begun in the study of Mars by the discovery of canals and their doubling, and by the micrometric determination of one hundred and fourteen fundamental points on the map, an era succeeding to that which was inaugurated a half century ago by the construction of the first two hemispheres and by the approximate fixing of fourteen points by MÄedler." Dr. Terby further says: "But these results have an incontestable value in the presence of the incredulity with which certain astronomers still consider the beautiful discoveries of Milan. Who would believe it? In spite of the beautiful drawings of M. Perrotin one reads still that the discoveries of M. Schiaparelli have not been confirmed by the largest instruments."

In "Astronomy and Astrophysics," No. 108, is published a series of contributions on Mars by Professors Edward C. Holden, William H. Pickering, C.A. Young, Lewis Swift, George C. Comstock, E.E. Barnard, and H.C. Wilson. All of these men are astronomers and all are connected as directors or observers with various observatories in the United States. Many sent sketches, most of them saw the canals, all saw the polar snow caps and darker regions. To say that these astronomers were sketching details which existed only in their imagination is simply preposterous.

Professor Herbert A. Howe, Director of the Chamberlin Observatory, at Denver, in his "Elements of Descriptive Astronomy" says: "If we have simply to answer the question, 'Would a man, as constituted at present, if transported to Mars find it possible to exist there?' The most probable answer is, 'No.' While one must not be dogmatic, it may be said, with some assurance, that the man would gasp a few times and die. However, it is conceivable that manlike beings might find a home there." Mr. Howe could have said without being dogmatic that a man thus transported would die of what is known as Caisson disease.

Among those who assert that the canals are artificial we have Professor Percival Lowell as pre-eminent. He has erected an observatory in the region of one of the clearest atmospheres in the world, has furnished it with the finest telescope that Clark ever made, and for the chief purpose of studying the surface features of Mars. In his interesting book on Mars he has presented the results of his observations in so lucid and convincing a manner that a reviewer of the English edition of the work, in an English astronomical journal, is led to write: "We may say at once that we feel bound to accept these observations as sufficient evidence of the real existence of the markings without expressing an opinion as to what they may be." The reviewer ends by saying: "Indeed, there is a subtle deftness in the way Mr. Lowell deals with his observations which gives the impression that he has been there and seen it all, and it is really hard to say why we cannot accept his conclusions. It is probable, because we are shy to receive new facts at a first statement. In time, no doubt, we shall be willing to accept his deductions (or facts) as to the markings. We were about to advance objections, but they seem poor, and really it is a case where each person must read and form his own ideas?—?but by all means read."

We have already presented a summary of his observations. We may add here, however, an extract from his book on the solar system. In this Mr. Lowell says of Mars: "What we see hints of the existence of beings who are in advance of, not behind us in the journey of life," and again: "Life on Mars must take on a very different guise from what it wears on the Earth. It is certain there can be no man there?—?that is as certain as anything can be. But this does not preclude a local intelligence equal to, and perhaps easily superior to, our own. We seem to have evidence that something of the sort does exist there at the present moment and has made imprint of its existence far exceeding anything we have left on Mother Earth."

George W. Morehouse, in his "Wilderness of Worlds," says: "Taken all together we must regard Mars as probably an inhabited world and very similar to the Earth."

Mr. Hector Macpherson, Jr., member of the Astronomical Society of France, in his interesting book "Astronomers of To-day," says, in regard to Mr. Lowell's book on Mars: "He does not ask us to believe anything fantastical or extravagant. His hypothesis has been framed to account for all the various Martian features. At present we can only say that it is the most comprehensive and probable theory yet advanced to explain the phenomena of the red planet."

Professor Todd, Director of the Astronomical Observatory at Amherst College, in his book on Stars and Telescopes, in referring to drawings of a region in the southern portion of Mars, known as the Solis Lacus, and a complicated drawing of another region, says: "Whether one views this marvellous and intricate system as a whole, or in some portion of high detail, it is difficult to escape the conviction that the canali have, at least in part, been designed and executed with a definite end in view."

There are many who do not deny the existence of some forms of life on the planet, but are not prepared to admit the existence of intelligent creatures. Sir Robert Ball expresses himself as follows: "That there may be types of life of some kind on Mars is, I should think, quite likely."

The number of astronomers above quoted, who have seen and drawn the canals, might be augmented, but a sufficient number have been cited to show that the evidence of the presence of these markings does not rest with a few, furthermore, some of these observers can only interpret the markings as the result of intelligent action. It may be urged that among those quoted are some whose opinion may not have great weight since they are not professional astronomers. One must insist that the study of planetary markings as well as the interpretation of their meanings comes not only within the province of planetary astronomers, but that any broad-minded man, with an acute eye and familiar with the sciences connected with the surface features of the Earth, is quite competent to make observations of his own and to judge of the merits of the question.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page