There is a constant interchange of material and of energy that takes place between a plant or an animal and its surroundings, and this interchange may be influenced by such physical conditions as temperature, light, gravity, etc., or by such chemical conditions as the composition of the atmosphere or of the water surrounding the organism. We can study the process of regeneration either by keeping the regenerating organism under the same conditions that it is subject to in its natural environment, or else we can change the surrounding physical or chemical conditions. In this way we can determine how far the regeneration is affected by external changes, and how far it is independent of them. If a change in the external conditions produces a definite change in the regeneration, then the new condition is called an external factor of regeneration. TEMPERATUREThat the rate at which regeneration takes place can be influenced by temperature has been shown by Trembley, Spallanzani, Bonnet, and by many more recent writers. In fact, so familiar is the process to every one who has studied regeneration, that it is usually taken for granted that such is the case. In general it may be stated that the limits of temperature under which normal growth may take place represent also the limits of temperature for regeneration. Lillie and Knowlton (’97) have determined the limits of temperature within which regeneration takes place in Planaria torva. The worm was cut in two transversely through the pharynx, and the time required at different temperatures to produce a new head on the posterior piece was recorded. The lowest temperature at which regeneration was found to take place was 3°C. Of six individuals kept at this temperature only one regenerated at all, and in this one the eyes and brain were still incomplete after six months. The optimum temperature, or at least that at which regeneration takes place most rapidly, was found to be 29.7°C.; a new head developed in 46 days at this temperature. At 31.5°C. In Hydra viridis, Peebles (’98) has found that regeneration is quicker at 26°-27°C. than at 28°-30°C. At the former temperature regeneration takes place in 48 hours. If kept at 12°C. pieces may regenerate in 96 hours, but not all the pieces had regenerated in this case until 168 hours. INFLUENCE OF FOOD ON REGENERATIONWhile the growth of an animal or of a plant is, in most cases, and, of course, within certain limits, directly connected with the amount of food that is obtainable, nevertheless extensive regeneration may take place in an animal, or part of an animal, entirely deprived of food. In this case the material for the new part is derived from the excess of material in the old part, and not only surplus food material, but even the protoplasm itself appears to be drawn upon to furnish material to the new part. The relation between regeneration and the amount of food present in the old part is well shown by experiments with planarians. If a planarian is kept for several months without food, it will decrease very much in size. In fact, the volume of a starved worm of Planaria lugubris compared with that of a fully fed individual may be only one-thirteenth of the latter (Fig. 13, A, B). If a starved worm is cut in two pieces, each piece will regenerate, although less quickly than in a well-fed worm. The new part will continue to increase in size at the expense of the old piece that is already in a starved condition. On the other hand, an excess of food does not necessarily produce a hastening of the regeneration, for, as Bardeen (’01) has shown, worms that have been for several days without food may regenerate more quickly than worms that have been fed just before they were cut into pieces. The growth of the new part at the expense of the old tissues is a phenomenon of the greatest importance, an explanation of which will involve, I think, the most fundamental questions pertaining to growth. The results show that growth is connected with a structural factor, and is not simply a physiological phenomenon, although no doubt physiological factors are involved. But the physiological factors that are here at work seem to be different from what is ordinarily understood; for the fact that a tissue that is slowly starving to death should be reduced still further, and at a more rapid rate, in order to supply material to a new part, is certainly a remarkable phenomenon. At present we are not in a position to offer any explanation that rests on observation, or experiment, as to how the transfer of material takes place, or as to how the new tissue manages to get hold of the material from other parts. It is possible to protect the old part to a large extent by keeping the regenerating piece well supplied with food. If a well-fed planarian is cut in two along the middle line of the body as indicated in Fig. 13½, A, there develops, in the course of five or six days after the operation, new material along the cut-side of each EFFECT OF LIGHT ON REGENERATIONAlthough few experiments have been made to test the effect of light on regeneration, it is certain that in many cases light has no effect on the process, neither as to the quality nor the quantity of the result. In one form, a tubularian hydroid, Eudendrium racemosum, it has been shown by Loeb that the regeneration of the hydranth takes place only when the animal is exposed to light. When a colony of eudendrium is brought into the laboratory and placed in an aquarium, the hydranths soon die; but if the colony is kept in a lighted aquarium, new hydranths are regenerated in a few days. If, on the other hand, the colony is kept in the dark, new hydranths do not appear; but if it is brought back again into the light the hydranths appear. In one experiment one lot of pieces was kept in diffuse daylight, and another lot in the dark. The former produced fifty new hydranths in a few days; those in the dark had not made any hydranths after seventeen days. They were then brought into the light, and in a few days several hydranths had developed on each piece. Loeb also tried the effect of different colored light on the regeneration of eudendrium. Dishes containing pieces of the hydroid were put into a box that was covered by colored glass plates. Pieces subjected to dark red and to dark blue light gave the following results. The old hydranths, as is generally the case, were absorbed in the course of three days. The first new hydranths appeared in the blue light on the fourth day, and during the following days the hydranths in this lot steadily increased. Eight days after the beginning of the There is another series of experiments made to test the effect of light on regeneration, which gave, however, negative results. Herbst observed that when the eye of certain crustacea GRAVITYThe only case known amongst animals, in which regeneration is influenced by the action of gravity, If pieces are cut from the stem of antennularia and suspended in Fig. 14.—After Loeb. Normal stalk of Antennularia antennina. B. Piece regenerating in vertical, normal position. C. Piece regenerating in inverted position. D. Piece regenerating in inclined, vertical position. E. Piece regenerating in inclined, inverted position. F. Piece regenerating in horizontal position. the water, regeneration takes place at the cut-ends. If a piece is suspended with its apical end upwards (Fig. 14, B), a new stem develops at the upper cut-end, and new roots from the lower cut-end. If a piece is suspended with its basal end upwards (Fig. 14, C), there is formed at its upper (basal) end a new stem with its branches also slanting upwards as shown in the figure. Roots appear at the lower (apical) end. Since gravity is the only force that acts in a vertical direction under the conditions of the experiment, Loeb concluded that it plays an important rÔle in determining the kind of regeneration that takes place. Its action is of such a nature that a new stem develops from the upper cut-end, and roots from the lower end, regardless of whether the upper end is the basal or the apical end of the piece. Similar results are also obtained, according to Loeb found it also possible to change the character of the growth of the apex of the normal stem and to transform it into a root. A long piece of the hydroid was cut off and suspended vertically with the basal end upwards. From the upper end a new stem began to grow, and then the entire piece was reversed, so that the new stem pointed downwards. Under these circumstances the young stem did not bend around and begin to grow upwards, as a young plant might have done, but it ceased to grow as a stem, and at its apex one or more roots developed. Loeb concludes: “I cannot imagine by what means the place of the formation of organs in antennularia is determined in connection with the orientation of the animal except by means of gravity.” The response of antennularia to the action of gravity is, I think, conclusively demonstrated by Loeb’s results, but that the phenomenon may be complicated by other factors is shown, I think, by the following experiments. Driesch found that if pieces of antennularia are cut off and placed between horizontal plates, so that both ends are free, roots are produced by the basal end. In my experiments, made at a different time of year from that at In a few cases in my experiments the basal end of the hydroid was left attached to the stem on which it had grown, and the piece was put into the same aquarium used for the preceding experiments. In those pieces that lay on the bottom of the aquarium, with the stem standing vertically, a new shoot, and not new roots, appeared on the upper end. Other pieces were hung at the top of the water of the aquarium with the stem turned downwards, and the basal, attached end of the piece upwards. These pieces produced neither a stem nor roots from the apical end. The results show that the presence of roots at one end has an influence on the regeneration at the other end. The same thing was shown in one case in which a short piece sank to the bottom of the dish and, developing roots at its basal end, became fixed: a stem grew out of the apical end. A number of other experiments that I made, in which pieces of antennularia were fixed to a rotating wheel, gave negative results, since neither roots nor stems appeared on the pieces. The rubbing of the ends of the piece against the water as the wheel turned round, or else the agitation of the water, prevented, most probably, the regeneration from taking place. How gravity acts on antennularia has not as yet been determined. The only suggestion that we can offer at present is that it brings about a rearrangement of the lighter and heavier parts of the tissues. A rearrangement of this sort has been demonstrated when the egg of the frog is inverted, and in consequence certain changes are brought about in the development that will be described in another chapter. EFFECT OF CONTACTThe contact of a newly forming part with a solid body has been shown by Loeb in a few cases, at least, to be a factor in regeneration. If a piece is cut from the stem of the tubularian hydroid Tubularia In another hydroid, Margelis carolinensis, studied by Loeb, the effect of contact is more easily demonstrated. If a branch of margelis Loeb has found that if pieces of the hydroid Campanularia are cut off and placed in a dish filled with sea water, all the hydranths that touch the bottom of the dish are absorbed and transformed into the substance of the stem. The coenosarc may creep out of the stem wherever it comes in contact with the glass, and produce stolons that give rise to new polyps on their upper surfaces. Loeb shows that growth takes place at the end of the stolon that pushes out of the perisarc, and this growing region draws the rest of the coenosarc after it. If a new hydranth appears along the old piece, the coenosarc is drawn towards the hydranth. EFFECT OF CHEMICAL CHANGES IN THE ENVIRONMENTTemperature, light, gravity, and contact are the most familiar kinds of external physical agencies that have a direct influence upon the growth of organisms. Food, though coming from the outside, yet acts only after it has entered the body. Organisms that live in water may be affected by the quantity and the kinds of the salts contained in the water, and also by the dissolved gases. The only experiments that have been made to show the influence of this last class of agents on animals are those made by Loeb. He placed pieces of the stem of tubularia in sea water of different degrees of concentration. After eight days the pieces, that had meanwhile produced hydranths, were measured. It was found that the maximum growth in length takes place, not in normal sea water, but in a much diluted solution. Loeb interprets this result to mean that the cells of tubularia must have a certain amount of turgidity in order to grow, and this is possible so long as the concentration does not pass a certain limit. This limit is reached by the addition of 1.6 grams of sodium chloride to each 100 c.c. of sea water. With a decrease in the concentration, the cells become more turgid, the maximum point corresponding to the maximum amount of growth. Below this point the solution is sup There is another variant in these solutions which Loeb takes into account. With the increase in concentration of the solution its power of absorbing oxygen decreases, but the difference is too slight to affect the main result. Not only does the amount of salts in solution affect the osmotic condition of the cells, but the salts also play a part in the metabolism of the animal. As the result of a series of experiments, the details of which may be here omitted, Loeb has shown that the regeneration of tubularia takes place only when the salts of potassium and of magnesium are present. A very little of the potassium salt is necessary, too much retards, and still more prevents regeneration. There must be also a certain amount of oxygen dissolved in sea water in order that regeneration may take place. If a piece of the stem of tubularia is cut off and one end pushed into a small tube that fits the stem closely, and if the tube is then stuck into the sand at the bottom of an aquarium, a hydranth develops only at the free end of the piece, and none at the end in the tube. The result appears to be due to the lack of oxygen. If the piece is then taken from the tube, a hydranth may appear at the end that has been in the tube. Another experiment shows the same result even more clearly. If a piece of the stem is suspended freely in the water, so that its lower end is almost in contact with the surface of the sand, but does not quite touch it, no regeneration takes place at the lower end. This result is interpreted by Loeb as due to the lack of oxygen in the water near the surface of the sand. GENERAL CONSIDERATIONSIn connection with the action of external factors on regeneration it is evident that in some cases they may not be in themselves necessary for the growth of a new part, yet when growth takes place they may determine what sort of a part is produced. For instance, if gravity It is important to find that those animals whose growth and regeneration are influenced by such external factors as light, gravity, and contact are attached animals that stand in a constant relation to these physical agents. They form only a very small part of the entire number of animals in which regeneration takes place. Animals that constantly move about are not, as a rule, influenced during their growth and regeneration by gravity and contact, and under natural circumstances they are always changing their position in regard to these agents. Temperature, and food, and substances in solution act alike on fixed and free forms, and they are, it appears, both influenced in the same way by these agents. The most significant fact that has been discovered in connection with the influence of external factors on regeneration is that the same factors that influence the normal growth of the organism also affect in the same way the regeneration. As yet an analysis of the external factors that influence growth has not been made out as completely for animals as for plants, especially in those cases in which the result is determined by several factors at the same time. An examination of the factors that influence regeneration in plants will be made in a later chapter. First, however, the internal factors of regeneration in animals will be considered. |