It is part of the essential nature of an animal to be receptive and responsive. The forces of nature rain their influence upon it; and it reacts to their influence in certain special ways. Other organisms surround it, compete with it, contend with it, strive to prey upon it, and occasionally lend it their aid. It has to adjust itself to this complex environment. There are two kinds of organic response—one more or less permanent, the other temporary and transient. We have already seen something of the former, by which the tissues (the epidermis of the oarsman's hand, and the muscles of his arm) respond to the call made upon them. The response is here gradual, and the effects on the organism more or less enduring. This, however, is not the kind of response with which we have now to deal. What we have now to consider is that rapid response, transient, but of the utmost importance, by means of which the organism directly answers to certain changes in the environment by the performance of certain activities. The parts specially set aside and adapted to receive special modes of influence of the environment are the sense-organs. We human folk get so much pleasure from and through the employment of our sense-organs, that it is important to remember that the primary object of the process of reception of the influences from without was not the Æsthetic one of ministering to the enjoyment of life by the recipient organism, but the essentially practical one of enabling that organism to respond to these influences. In In this chapter we shall consider the modes in which the special sense-organs are fitted to receive the influences of the environment, deferring to a future chapter the consideration of the resulting activities. For the present we take these activities for granted, observing them only in so far as they give us a clue to the sense-reaction by which they are originated. In this chapter, too, we shall deal, for the most part, with the physiological aspects of sensation. In all other organisms than ourselves, that is to say, than each one of us individually for himself, the psychological accompaniments of the physiological reactions of the sense-organs are matters of inference. Still, so closely and intimately associated are the physiological and the psychological aspects, that the exclusion of all reference to the latter would be impracticable, or, if practicable, unadvisable. What is practicable and advisable is to remember that, even if the two are mentioned in a breath, the physiological and the psychological belong to distinct orders of being. In addition to the time-honoured "five senses," there are certain organic sensations, so called, which take their origin within the body. These are, for the most part, somewhat vague and indefinite. They do not arise immediately and in direct response to changes in the environment, but indicate conditions of the internal organs. Such are hunger, thirst, nausea, fatigue, and various forms of discomfort. Although they are of vital importance to the organism, prompting it to perform certain actions or to desist from others, they need not detain us here. More definite than these, but still of internal origin, is the muscular sense. This, too, is of continual service to every active animal. By it information is given as to the energy of contraction of the muscles, and of the amount of We come now to the special senses. Of these we will take first the sense of touch. Through this sense we are made aware of bodies solid or liquid (or perhaps gaseous) which are actually in contact with the skin or its infoldings at the mouth, nostrils, etc. There are considerable differences in the sensitiveness of the skin in different parts of its surface; some parts, like the filmy membrane which covers the eye, being very sensitive, while others, like the horny skin that covers the heel of a man who is accustomed to much walking, are relatively callous. Different from this is the delicacy of the sense of touch. This delicacy is really the power of discrimination, and therefore involves some mental activity. But it is also dependent upon the distribution of the recipient end-organs of the nerve. The highest pitch of delicacy is reached in the tip of the tongue, which is about sixty times as delicate as the skin of the back. The power of discrimination is tested in the following way: The points of a pair of compasses are blunted, and with them the skin is lightly touched. When the points are close together, the sensation is of one object; It is beyond the purpose of this chapter to describe minutely the nature and structure of the nerve-ends in the sense-organs. This is a matter of minute anatomy, or histology. A full description of them as they occur in man will be found in any standard text-book of physiology; while Sir John Lubbock's "Senses of Animals" gives much information concerning, and many illustrations of, the minute structure of the sense-organs in the invertebrates. Here I can only touch very briefly on some of the more important points. One of the larger nerves of the body (e.g. the sciatic nerve), consists of a bundle of nerve-threads collected from a considerable area; some of these (motor threads) end in muscles, others (sensory threads) in the skin or its neighbourhood. Each nerve-thread has a central axis-fibre, which is surrounded by a fatty, insulating medullary sheath, and this by a delicate primitive sheath. In some parts of the skin the sensory nerve-threads lose their medullary sheath, and end in very fine branches between the cells of the tissue. In other cases the cells near their termination Fig. 23 Fig. 23.—Tactile corpuscles. 1. In the beak of a goose. 2. In the finger of a man. 3. In the mesentery of a cat. Hairs are delicate organs of touch, though, of course, this is not their only function. They act as little levers embedded in the skin. Turning now to the vertebrate animals other than man, we find in them a sense of touch closely analogous to our own. As in us, so in them, the specially mobile parts are eminently sensitive and delicate; for instance, the lips in many animals, such as the horse, and the finger-like organ at the end of the elephant's trunk. In some of them special hairs are largely developed as organs of touch, as in the whiskers of the cat and the long hairs on the rabbit's lip. With the aid of these the rabbit finds its way in the darkness of its burrow; and it is said that, deprived of these organs, the poor animal blunders about, and is unable to steer its course in the dark. The wing of the bat is very sensitive to touch; and it is supposed that it is through this sense that the bat is able to direct its course in the darkness of caves. Miss Caroline Bolton thus describes an experimental trial of this power of the bat at which she was herself present. A room, about twenty feet by sixteen, was arranged with strings crossing each other in all directions so as to form a network with about sixteen inches space between the strands. To each string was attached a bell in such a way that the slightest touch would make it ring. One corner of the room Fig. 24 Fig. 24.—Touch-Hair of insect. t.h., touch-hair; cu., cuticle; h.y., hypodermis; g., ganglion-cell connected with nerve passing into the cavity of the touch-hair (after Miall). The ganglion is often surrounded by several—eight or less—accessory cells, which are not figured here.] The crustaceans and many insects are covered with a dense armour, and it might be supposed that in them there could be no sense of touch. But this sense is by no means absent. Seated on the tough integument are delicate little hairs, to the base of which a nerve-fibril passes through a perforation in the integument. These are specially numerous in the antennÆ of insects. In yet lower organisms we know in some cases the manner in which they are sensitive to touch; but in a great number of cases, although observation shows that they are thus sensitive, we know nothing definite as to how the surface is specially fitted to receive the stimuli. Even the primitive amoeba, however, is sensitive in the sense spoken of on p.8; that is to say, it reacts under the influence of a stimulus. Closely associated with the sense of touch is the Let us note that this temperature-sense, unlike the sense of touch, may make us aware of distant bodies. It is, then, what we may term a telÆsthetic sense in contradistinction to a contact-sense. It is stimulated by a molecular throb; the throbbing body may be in contact, but it may be as distant as the sun, in which case the molecular pulsations are brought to us on waves of Æther. Whether these waves act directly on the nerve end-organs, or indirectly on them through the warming of the skin-surface in which they terminate, we cannot say for certain. But if the hand be held before a heated stove and be sheltered from the heat by a screen, the removal of the screen, even for the fraction of a second, gives rise to a strong stimulation of the temperature-sense, though the skin-surface be not appreciably raised in temperature. Hence it is probable that the end-organs are stimulated directly, and not indirectly. Concerning the temperature-sense in the lower animals, nothing definite is known. But it is impossible to see our familiar pets basking in the sunshine, or a butterfly sunning itself on a bright summer's day, without feeling confident that the temperature-sense is a channel of keen enjoyment. As before mentioned, however, this is not to be regarded as the primary end in sensation. The primary end is not life-enjoyment, but life-preservation. And we must regard the temperature-sense as developed in the first instance to enable the organism to escape from the ill effects of deleterious heat or cold, and to seek those temperature-conditions which are most helpful to the The sense of taste is called into play by certain soluble substances, or liquids, which must come in contact with the specialized nerve-endings. Under normal circumstances, the sense of taste is closely associated with that of smell, the result of the combination of the two special senses being a flavour. The bouquet of a choice wine, the flavour of a peach, involve both senses; quinine involves taste alone; and garlic and vanilla are nearly, if not quite, tasteless,—what we call their taste is in reality their action on the organ of smell. It is difficult to classify tastes. Sweet, bitter, salt, alkaline, sour, acid, astringent, acrid,—these are the prominent and characteristic varieties. Fig. 25 Fig. 25.—Taste-buds of rabbit. i., section across part of the pleated patch (enlarged); ii., taste-buds further enlarged.] This sense is generally localized in or near the mouth; in us mainly in the tongue. One manner, but not the only manner, in which the nerves in this region terminate is in the minute flask-shaped taste-buds, which have near one end, where they reach the surface, a funnel-shaped opening, the taste-pore. They are made up of elongated cells, some of which near the centre are spindle-shaped, and are called taste-cells. They are found chiefly round the large circumvallate papillÆ; but in the rabbit and some other animals they are collected in the folds of a little ridged or pleated patch—the papilla foliata—on each side of the tongue near the cheek-teeth. It is probable that the stimulation of the end-organs of taste is effected by the special mode of molecular vibration due to the chemical nature of the sapid substance. Mr. J. B. Haycroft, in a paper read before the Royal Society of Edinburgh,[EO] suggests that "a group of salts of similar chemical properties have their The delicacy of the sense of taste in man has been the subject of investigation by Messrs. E. H. S. Bailey and E. L. Nichols.[EP] They give the following table:—
The above figures represent means or averages of a great number of individuals. There was very considerable variation for some tastes. In the case of the bitter of quinine, the maximum delicacy was the detection of 1 part in 5,120,000 parts of water; the minimum 1 part in 456,000 parts of water. Except in the case of salt, the sense was more delicate in women than in men. It is not stated whether the men tested were smokers. It does not seem necessary to say anything concerning the sense of taste in the lower mammalia. In birds and reptiles the sense of taste does not appear to be highly developed. Parrots are, perhaps, better off in this respect than the majority of their class; and the ducks have special organs on the edges of the beak, which seem to minister to this sense. A python at the Zoological Gardens, partially blind owing to a change of skin, is said to have struck at an animal, but to have only succeeded It may here be mentioned that the scales and skin of many fishes are provided with sense-organs which very closely resemble the taste-buds of higher animals. They occur in the head and along the "lateral line" which runs down the side of the fish, and may be readily seen, for example, in the cod. Mr. Bateson's[EQ] careful observations at Plymouth gave, however, no indication of the possession of an olfactory or gustatory function, and their place in the sensory economy of the fish remains problematical. In or near the mouth similar end-organs are found to be somewhat variously developed in different fishes—on the palate and lips, on the gill-bars, more rarely on the tongue, and on the barbels of the rockling and the pout. How far any or all of these have a gustatory function remains to be proved. Anglers and fishermen, however, from their everyday experience, and naturalists from special observations, do not doubt that fishes have a sense of taste. Professor Herdman's recent experiments on feeding fishes with nudibranchs[ER] (naked molluscs) seem to show, for example, that the fishes concerned, including shannies, flat-fish, cod, rockling, and others, have a sense of taste leading them to reject these molluscs as nasty. They show, too, that some of the nudibranchs (Doris, Ancula, Eolis) are protected by warning coloration. Our knowledge of the sense of taste among the lower (invertebrate) animals is imperfect, and is largely based rather on observation of their habits than on the evidence of anatomical structure. Here, again, comes in the difficulty of distinguishing between taste and smell. But even if the caterpillars which refuse to eat all but one or two special herbs, or the races of bloodsuckers which seem to have individual and special tastes, are guided in part by an olfactory sense, there is much evidence which seems The organs of taste in insects are probably certain minute pits, in each of which is a delicate taste-hair, which, in some cases, is perforated at the free end. They occur in the maxillÆ and tongue in ants and bees, and on the proboscis of the fly. In many of the invertebrates, the crayfish and the earthworm, for example—to take two instances from very different groups—observation seems to show that a sense of taste is developed, for they have marked and decided food-preferences. Nevertheless, the existence of special organs for this purpose has not been definitely proved. The sense of taste no doubt ministers to the enjoyment of life. But, presumably, it has been developed in subservience to the process of nutrition. Primarily, taste was not an end in itself, but was to guide the organism in its selection of food that could be assimilated. Nice and nasty were at first, and still are to a large extent, synonymous with good-for-eating and not-good-for-eating. With unwonted substances, however, its testimony may be false. Sugar of lead is sweet, but fatal. Brought to a new country, cattle often eat, apparently with relish, poisonous plants. Still, under normal circumstances, the testimony of taste is reliable. The sense of smell is, to a large extent, telÆsthetic. It The organ of smell in ourselves and in all the mammalia is the delicate membrane that covers the turbinal bones in the nose. It contains cells with a largish nucleus, around which the protoplasm is mainly collected. A filament passes from this to the surface, and ends in a fine hair or cilium (or a group of hairs or cilia in birds and amphibia); a second filament runs downwards into the deeper parts of the tissue, and may pass into a nerve-fibril. In us and air-breathing creatures, the substance which excites the sensation of smell must be either gaseous or in a very fine state of division; but in water-breathers the substance exciting this sensation—or, in any case, one of anticipatory taste—may be in solution. The sensitiveness of the olfactory membrane is very remarkable. A grain of musk will scent a room for years, and yet have not sensibly lost in weight. Drs. Emil Fischer and Penzoldt found that our olfactory nerves are capable of detecting the 1/4,600,000 part of a milligramme of chlorophenol, and the 1/460,000,000 part of a milligramme, or about one thirty-thousand-millionth of a grain, of mercaptan. It may be that to such substances our olfactory sensibility is especially delicate. It is well known that the sense of smell is in some of the mammalia exceedingly acute. The dog can track his master through a crowded thoroughfare. The interesting experiments of Mr. Romanes[ES] show that, under ordinary conditions of civilized life, the smell of boot-leather is a factor, and the dog tracks his master's boots. In one case, the boots were soaked in oil of aniseed, but this to us powerful scent did not overcome the normal odour of the master's boots. Mr. W. J. Russell, in a subsequent number of the same periodical, describes how his pug could find a small piece of biscuit by scent, and this odour of biscuit was not overmastered by a strong smell of eau-de-Cologne. Deer-stalkers know well how keen is the sense of smell in the antlered ruminants. We must not, however, be too ready to conclude, from these observations, that the olfactory membrane is absolutely more sensitive in such animals than it is in man. It may well be that, though they are so keen to detect certain scents, they are dull to those which affect us powerfully. It is quite possible that the odour of aniseed or eau-de-Cologne is—possibly from the fact that their end-organs are not attuned to these special molecular vibrations—out of their range of smell. Their special interests in life have led to the cultivation of extreme sensibility to special tones of olfactory sensation. Under unusual circumstances, man may cultivate unwonted modes of utilizing the sense of smell. A boy, James Mitchell, who was born blind, deaf, and dumb, and who was mainly dependent on In birds the sense of smell is but little developed, notwithstanding all that most interesting naturalist, Charles Waterton, wrote on the subject. Vultures seem unable to discover the presence of food which is hidden from their sight. Probably reptiles share with them this dulness of the sense of smell. It has already been remarked that, in the case of aquatic animals, there is probably little distinction between taste and smell. It would be well, perhaps, to restrict the word "smell" to the stimuli produced by vapours or air-borne particles, and to use the phrase "telÆsthetic taste," or simply "taste," for those cases where the effects are produced through the medium of solution. In this case, however, the point to be specially noticed is that taste in aquatic animals becomes a telÆsthetic sense, informing the organism of the presence of more or less distant food. Thus, if you stir with your finger the water in which leeches are living, they will soon flock to the spot, showing that the telÆsthetic sense is associated with an appreciation of direction. If a stick be used to stir the water, they do not take any notice of it. Mr. W. Bateson[ET] has shown that there are many fishes, among which are the dog-fish, skate, conger eel, rockling, loach, sole, and sterlet, which habitually seek their food by scent (telÆsthetic taste), aided to some extent by touch, and but little, if at all, by sight. "None of these fishes ever starts in quest of food when it is first put into the tank, but waits for an interval, doubtless until the scent has been diffused through the water. Having perceived the scent of food, they swim vaguely about, and appear to seek it by examining the whole area pervaded by the scent, having seemingly no sense of the Although I am aware, and have already mentioned, that Mr. Bateson's observations do not support the view that the sense-organs of the lateral line minister to this telÆsthetic sense, still I think that further observations and experiments may show that these sense-organs are "olfactory," and that the lateral development may be in relation to the appreciation of the direction in which the food lies. It is, however, a difficult matter to determine, and the few experiments I have made are so far inconclusive. Much has been written concerning the sense of smell in insects. That they possess such a sense few will be disposed to doubt. The classical observations of Huber show that bees are affected by the smell of honey, and that the penetrating odour of fresh bee-poison will throw a whole The correct localization of the sense of smell has been a matter of difficulty. Kirby and Spence localized it at the extremity of the "nose," between it and the upper lip. That the nose, they naÏvely remark, corresponds with the so-named part in mammalia, both from its situation and often from its form, must be evident to every one who looks at an insect. Lehman, Cuvier, and others, misled by the fact that the organ of smell is in us localized at the entrance of the air-track, supposed that at or near the spiracles of insects were the organs of smell. Modern research tends more and more clearly to localize the sense of smell, as first suggested by RÉaumur, in the feelers or antennÆ, and in some cases also in the palps. If the antennÆ of a cockroach be extirpated or coated with paraffin, he no longer rushes to food, and takes little notice of, and will sometimes even walk over, blotting-paper moistened with turpentine or benzoline, which a normal insect cannot approach without agitation. There can be little doubt that it is by means of its large branching antennÆ that the male emperor moth (Saturnia carpini) is able to find its mate.[EU] If a collector take a virgin female In the aquatic crayfish there are, besides the long antennÆ, smaller antennules, each of which has two filaments, an inner and an outer. On the under surface of most of the joints of the outer filament there are two bunches of minute, curiously flattened organs, which were regarded by Leydig, their discoverer, as olfactory. Observation, too, seems to confirm the view that the sense of smell (or telÆsthetic taste) is located in the antennule. I tried on a crayfish the following experiment: When it was at rest at the bottom of its tank, I allowed a current of pure In the snail the anterior pair of "horns," or tentacles, are said to be olfactory. Near the end of each is a large ganglion, or nerve-knot, from which fibres pass to the surface, in which there are said to be developed sensory knobs. Snails, however, from which these tentacles have been removed are apparently still possessed of a sense of smell. Certain lobed processes round the mouth have been regarded as the seat of olfactory sensation, but this is doubtful. In the foot of the snail, the part on which it glides, there is a hollow gland, and in this there are special cells, each of which gives off a delicate rod, enlarging at the free end into a ciliated knob. These are regarded as sensory and, it may be, olfactory. In shell-fish like the mussel, in which the water is sucked in by an inhalent tube or siphon, and ejected through an exhalent siphon above it (see Fig. 2, p.4), there is at the entrance of the incoming current a thin layer of elongated cells which are described as olfactory, and are in association with a special ganglion. Olfactory depressions have been described in some worms. But in a great number of the lower invertebrates very little or nothing is known concerning a sense of smell. Apart from the pitch of a note is its quality. The same note struck on different instruments or sung by different persons has a different ring. This is determined by the number and intensity of overtones, or partials, which are associated with the fundamental tone. Suppose the deep fundamental tone of 33 vibrations be sounded; with it there may be associated overtones, eight or nine in number, all of which are simple multiples (twice, thrice, four times, The delicacy of discrimination of tones is greatest in the mid-region of hearing; and there is much individual variation in accuracy of ear. I have made experiments on many individuals to test their powers in this respect. I found some who were unable, in the mid-region of hearing, to state which was the higher of two notes sounded on a violin, the tones of which were separated by a major third, and in one case by a fifth. With notes on the piano the discrimination was more delicate, and yet more delicate when the notes were sung. In such cases tone-discrimination is deficient; and between these and the musician, who is stated to be able to distinguish tones separated by only 1/64 of a tone, there are many intermediate stages. It is beyond my purpose to describe, in more than a very general way, the nature of the auditory apparatus of man. The vibrations of the air are received by the drum-membrane, which lies in the auditory passage. From this it is transmitted, by a chain of small bones, to the inner auditory apparatus. This consists of two small membranous sacs, with one of which three membranous looped tubes, the semicircular canals, are connected; with the other is connected a spiral tube, the cochlear canal. These membranous sacs and canals are filled with fluid, and are surrounded by the fluid which fills the bony cavity in which they lie. This bony cavity has two little windows, one oval and the other round, across each of which a membrane is stretched. The oval membrane is in connection with the chain of auditory bones; and when this is made to vibrate in and out, the membrane of the round window vibrates out and in. Thus the fluid around and within the membranous sacs and canals is set in vibration. We must now pass on to consider the sense of hearing in animals. That the mammalia have this sense well developed is a matter of familiar observation, and in some of them, such as the horse and the deer, it is exceedingly In birds the sense of hearing is not only very sensitive, but the power of discrimination is exceedingly delicate. No one who has watched a thrush listening for worms can doubt that her ear is highly sensitive. The astonishing accuracy with which many birds imitate, not only the song of other birds, but such unwonted sounds as the clink of glasses or the ring of quoits, shows that the delicacy in discrimination has reached a high level of development. In birds, however, the cochlear canal has not the same development that it has in mammals, and there are no arched rods—no organs of Corti. Nothing special is to be noted concerning the sense of hearing in the reptiles, amphibia, and fishes. In all (with the exception of the lowly lancelet) the auditory organ is developed. We shall, however, presently see reason to question whether the possession of an "auditory organ," with well-developed semicircular canals, necessarily indicates the power of hearing. And Mr. Bateson's recent experiments at Plymouth[EX] seem to indicate that fishes are not so sensitive in this respect as anglers[EY] are wont to believe. "The sound made by pebbles rattling inside an opaque glass tube does not attract or alarm pollack; neither are they affected by the sharp sound made by letting a hanging Turning to the invertebrata, we find, even in creatures as low down in the scale of life as jelly-fish, around the margin of the umbrella in certain medusa, simple auditory organs. In some cases they are pits containing otoliths (minute calcareous or other bodies, which are supposed to be set a-dance by the sound-vibrations); in others there is a closed sac with one or more otoliths; in others, again, they are modified tentacles, partially or completely enclosed in a hood. All these are generally regarded as auditory, there being specially modified cells of the nature of hair-cells. We shall see, however, that another interpretation of organs containing otoliths is at any rate possible. For the present, we will follow the usual interpretation, and regard them as auditory. Vesicular organs containing otoliths are found near the cerebral ganglia in some of the worms and their relations. But the common earthworm, though it appears to be sensitive to sound, does not appear to have any such organs. Molluscan shell-fish are generally provided with auditory organs. In the fresh-water mussel it is found in the muscular foot. It can be more readily seen in the Cyclas, if the transparent foot of this small mollusc be examined under the microscope. It is a small sac containing an otolith. Mr. Bateson found that the mollusc Anomia "can be made to shut its shell by smearing the finger on the glass of the tank so as to make a creaking sound. The animals shut themselves thus when the object on which they were fixed was hung in the water by a thread." In the snail and its allies the auditory sac is found in close connection with the nerve-collar that surrounds the gullet. Fig. 26.—Antennule of crayfish. i.j., inner joint; o.j., outer joint; ol., olfactory setÆ; ol'., the same, enlarged; au.op., auditory opening in the basal division, which has been cut open to show au.s., the auditory sac; au.n., auditory nerve branching to the two ridges beset with auditory hairs; au.h., auditory hair, enlarged. (After Howes.) Fig. 27 Fig. 27.—Diagram of ear. t.m., tympanic membrane, to which is attached a chain of small bones stretching across the cavity of the drum, the innermost of which, st., fits into the "oval window." The vibrations are transmitted up one side and down the other side of the cochlear canal, c.c., and thus reach the "round window," f.r.; s.c. is one of the semicircular canals, the other two are omitted; e.t. is the Eustachian tube connecting the cavity of the drum with the mouth-cavity. In the lobster or crayfish the auditory organs are found at the base of the smaller feelers or antennules. They are little sacs formed by an infolding of the external integument (see Fig. 26, p.259). Beautifully feathered auditory hairs project into the sac along specialized ridges, and the sac in many cases contains grains of sand which play the part of otoliths. Hensen seems to have proved that shrimps collect the grains of sand and place them in the auditory sac for this purpose. The curious shrimp-like Mysis has two beautiful auditory sacs in its tail. These are provided with auditory hairs. Hensen watched these under the microscope while a musical scale was sounded, and found that the special hairs responded each to a certain note. When this particular note was sounded the hair was thrown into such violent vibration as to become invisible, but by other notes it was unaffected. Fig. 28 Fig. 28.—Tail of Mysis. au., auditory organ. Fig. 29 Fig. 29.—Leg of grasshopper. ty., tympanic membrane. Passing now to insects, we may first note that grasshoppers and crickets have an auditory organ on the front leg. These are provided with tympanic membranes, and the breathing-tubes, or tracheÆ, are so arranged that the pressure of the air is equalized on the two sides of the membrane—just as in us and other vertebrates the same end is effected by a tube which runs from the interior of the drum of the ear to the mouth-cavity (see Fig. 27). In the organ within the leg there is a group of cells, followed by a row of similar cells which diminish regularly in size from above downwards. Each is in connection with a nerve-fibril, and contains a delicate auditory rod. It has been suggested that the diminution in size of the cells may have reference to the appreciation of different notes, but nothing definite is known on the matter. Ants, too, have Observation seems to point to the fact that in most insects the sense of hearing is lodged in the feelers, or antennÆ. Kirby made the following observation on a little moth: "I made," he says, "a quiet, not loud, but distinct noise; the antenna nearest to me immediately moved towards me. I repeated the noise at least a dozen times, and it was followed every time by the same motion of that organ, till at length the insect, being alarmed, became more agitated and violent in its motions." Hicks wrote, in 1859, "Whoever has observed a tranquilly proceeding capricorn beetle which is suddenly surprised by a loud sound, will have seen how immovably outward it spreads its antennÆ, and holds them porrect, as it were, with great attention, as long as it listens." The same observer described certain highly specialized organs in the antennÆ of the hymenoptera (ants, bees, and wasps), which he thus describes: "They consist," he says, "of a small pit leading into a delicate tube, which, bending towards the base, dilates into an elongated sac having its end inverted." Of these remarkable organs, Sir John Lubbock says there are about twelve in the terminal segment, and he has suggested that they may serve as microscopic stethoscopes. Mayer, experimenting with the feathered antenna of the male mosquito, found that some of the hairs were thrown into vigorous vibration when a note with 512 vibrations per second was sounded. And Sir John Lubbock, who quotes this observation, adds,[EZ] "It is interesting that the hum of the female gnat corresponds nearly to this note, and would consequently set the hairs in vibration." The same writer continues, "Moreover, those auditory hairs are most affected which are at right angles to the It is difficult to determine the range of hearing in the lower organisms. But it is quite possible, nay, very probable, that the superior limit of auditory sensation is much more extended in insects than it is in man. We know that many insects, such as the cicadas, the crickets and grasshoppers, many beetles, the death's-head moth, the death-watch, and others, make, in one way or another, sounds audible to us. But there may be many insect-sounds—we may not call them voices—which, though beyond our limits of hearing, are nevertheless audible to insects. At the other end of the scale, on the other hand, slow pulsations may be appreciated—for example, by aquatic creatures—by means of what we term the auditory organs, in a way that is not analogous to the sensation of sound in us. It may be noted that auditory organs are dotted about the body somewhat promiscuously in the various invertebrates. We have seen that auditory organs, or what are generally believed to be such, are found in the foot of bivalves, in the antennules of lobsters, in the fore legs of crickets and ants, in the abdomen of locusts, in the balancers of flies, and in the tail of Mysis. But when we come to consider the matter, there is no reason why the organ of hearing should be in any special part of the body. The waves of sound rain in upon the organism from all sides. There is no great advantage in having the organs of hearing in the line of progression, as with sight, where the rays come in right lines; nor in having them in close association with the mouth, as in the case of the organ of smell. Closely connected with the organ of hearing in vertebrates is the organ of another and but recently recognized sense. The sac lies in a somewhat irregular cavity in a bone at the side of the head, in the walls of which are five openings leading into curved tunnels in the bone in which lie the membranous loops. The planes in which the three semicircular canals lie are nearly at right angles to each other, and they are called respectively the horizontal, the superior, and the posterior. The two latter unite at one end before they reach the sac; hence there are five, and not six, openings into the cavity. At one end of each semicircular canal is a swelling, or ampulla, in each of which is a ridge, or crest, abundantly supplied with hair-cells. And in a little recess in the sac there is, occupying its floor, its front wall, and part of its outer wall, a patch of hair-cells covered by a gelatinous material with numerous small crystalline otoliths. The only other point that calls for notice is that the membranous sac does not fit closely in the bony cavity in which it lies, while the diameter of the membranous semicircular canals is considerably less than that of their bony tunnels, except at the ampullÆ, or swellings, where they fit pretty closely. Both the bony cavity and the membranous labyrinth (as it is called) are filled with fluid. From its close connection with the organ of hearing, this apparatus was for long regarded as in some way auditory in its function, and it was surmised that it enabled us to perceive the direction from which the sound came. But how it could do so was not clear. In 1820 M. Flourens made the observation that the injury or division of a membranous canal gave rise in the patient to rotatory movements of the animal round an axis at right angles to the plane of the divided canal; and he, therefore, suggested that the canals might be concerned in the co-ordination of movement. They are now regarded as the organs of a sense of rotation or acceleration. Fig. 30 Fig. 30.—Diagram of semicircular canals. A. bony labyrinth of human ear (after SÖmmering). c, c., the cochlea; s.c., superior semicircular canal; p.c., posterior semicircular canal; h.c., horizontal semicircular canal; a, a, a, their swellings, or ampullÆ; f.o., f.r., fenestra ovalis and rotunda (oval and round windows) in the vestibule. B. Diagram of semicircular canal to illustrate effect of rotation. The large arrows indicate the direction of the rotation. The small arrow to the left indicates the resulting flow of the inner fluid into the ampulla; that to the right, the flow of the outer fluid into the vestibule.] From Professor Crum Brown's paper in Nature I transcribe, with some verbal modifications, his account of how the semicircular canals enable us to feel these changes of motion. Let us consider the action of one canal. If the head be rotated about a line at right angles to the plane of the canal, with the ampulla leading, there will be a tendency It is thus by means of the semicircular canals that we can appreciate acceleration of rotatory motion.[FB] But we can also appreciate acceleration of movements of translation—forwards or backwards, up or down. And Professor Mach has suggested that it is through the stimulation of the hair-cells in the patch in the sac itself (the so-called macula acustica) that we are able to appreciate these changes. The otoliths, held loosely and lightly in position by the gelatinous substance in which they are embedded, may, through their inertia, aid in the stimulation of the sense-hairs. And this naturally suggests the question whether those sense-organs in the invertebrates which contain otoliths may not be regarded with more probability as organs for the appreciation of changes of motion than as auditory organs. This for some years has been my own belief. I have always felt a difficulty in understanding how the otoliths are set a-dance by auditory vibrations. But their inertia would materially aid in the appreciation of changes of motion. In some forms the otoliths are held in suspension in a gelatinous material. In others—the molluscs, Sight, like hearing, is a telÆsthetic sense. Through it we become aware of certain vibratory states of more or less distant objects. The medium by means of which these vibrations are transmitted is not, as in the case of hearing, the air, but the Æther which pervades all space. The rate of transmission is about 186,000 miles in a second. That which answers in vision to pitch in hearing is colour. The lowest, or gravest, light-tone to which we are sensitive is deep red, where the number of vibrations per second is about 370 billions (370,000,000,000,000). The highest, or most acute, light-tone is violet, with about 833 billion vibrations in a second. If white light be passed through a prism, the rays are classified according to their vibration-periods, and are spread out in a spectrum, or band of rainbow colours. But different individuals vary, as we shall presently see, in their sensibility to the lowest and We saw that in the case of sound-waves, when the number of vibrations in a second is doubled, the sound is raised in pitch by an octave. Using this term in an analogous way for colour-tones, we may say the range in average vision is about one octave—that is, from about 400 billion to about 800 billion vibrations in a second. But, though these are the limits in human vision, we know of the existence of many octaves of radiant energy physically in continuity with the light-vibrations. Photography has made us acquainted with ultra-violet vibrations up to about 1600 billions per second—an octave above the violet. And Professor Langley's observations with the bolometer indicate the existence of waves with as low a vibration-period as one billion per second, and even here, in all probability, the limit has not been reached. To the vibrations more rapid than those that are concerned in the sensation of violet, the human organism is apparently in no manner sensitive. But to infra-red vibrations down to about thirty billions per second the nerves of the skin respond through the temperature-sense. We shall have to return to these limits of sensation at the close of this chapter. Fig. 31 Fig. 31.—The human eye. Horizontal section, to show general structure.] Fig. 32 Fig. 32.—Retina of the eye. Enlarged section of minute fragment. b., back of retina next the outer coat; l.r.c., layer of rods and cones; i.l., intermediate layers; l.g.c., layer of ganglion-cells; l.n.f., layer of nerve-fibres; f., front of retina, the surface turned towards the pupil. The human eye is a nearly spherical organ, capable of tolerably free movements of rotation in its socket. What we may call the outer case, which is white and opaque elsewhere, is quite transparent in front. Through this transparent window may be seen the coloured iris, in the centre of which is a circular aperture, the pupil. The size of the pupil changes with the amount of light—it dilates or contracts, according as the light is less or more intense. Just behind it, and still in the front part of the eye, is the transparent lens, the convexity of the anterior surface of The organ of vision, then, in us consists of an essential sensory membrane, the retina, with its delicate rods and cones; and an accessory apparatus for focussing an inverted image on to the sensitive surface of the retina. The surface is not, however, equally sensitive, or, in any case, does not give an equal power of discrimination, throughout its whole extent. This is seen in the experiment above described. When we look at the dot we see the coin, but not distinctly. The area of clear and distinct vision is, in fact, very small, constituting the yellow spot about 1/12 of an inch (2 millimetres) long, and 1/30 of an inch (.8 millimetre) broad. And even within this small area there is a still more restricted area of most acute sensibility only 1/120 of an inch (.2 millimetre) in diameter. Nevertheless, within this minute area there are some two thousand cones, the rods being here absent. In carefully examining an object we allow this area of acute vision to range over it. Hence the extreme value of that delicate mobility which the eye possesses—a mobility that is accompanied by muscular sensations of great nicety. We saw that the sense of touch in the tongue is sufficiently delicate to enable us to recognize, as two, points of contact separated by 1/25 of an inch (1.1 millimetre). What, in similar terms, is the delicacy of sight? With regard to the mode in which the stimulation of the retinal elements is effected, we have no complete knowledge. Certain observations of Boll and KÜhne, however, show that when an animal is killed in the dark the retina has a peculiar purple colour which is at once destroyed if the retina be exposed to light. If a rabbit be killed at the moment when the image, say, of a window, is formed on the retina, and the membrane at once plunged in a solution of alum, the image may be fixed, and an "optogram" of the window may be seen on the retina. The discharge of the colour of the retinal purple may be regarded as the sign of a chemical change effected by the impact of the light-vibrations. But in the yellow spot there seems to be no visual purple. It is, indeed, developed only in the rods, not in the cones. Here, probably, chemical or metabolic changes occur without the obvious sign of the bleaching of retinal purple. In the dusk-loving owl the retinal purple is well developed, but in the bat it is said to be absent. We saw that in the case of hearing the auditory organ is fitted to respond to air-borne vibrations varying from about thirty to thirty thousand per second. And though the details of the process are at present not well understood, it is believed that certain parts of the recipient surface are fitted to respond to low tones, other parts to intermediate tones, and yet others to high tones. Thus the reception is serial. If there be two pianos near each other, accurately in tune, any note struck on one will set the corresponding note vibrating in the other.[FC] The auditory organ may be likened to this second piano. Special parts respond to special tones. How, then, are we to account for our wide range of colour-sensation? Just as the blending by the artist on his palette of a limited number of pigments gives him the wide range of colour seen on his canvas, so the blending of a few colour-tones may give us the many shades we are able to distinguish. The smallest number of fundamental colour-tones which will fairly well account for the phenomena of colour-vision, is three. And these three are red, green, and blue or violet. These are the three so-called primary colours. All others are produced from these elements by blending. To explain our ability to appreciate differences of colour, then, it is supposed, on the hypothesis of Young and Von Helmholtz, that three kinds of nerve-fibres exist in the retina, the stimulation of which gives respectively, red, green, and violet in consciousness. Professor McKendrick, interpreting Von Helmholtz, gives[FD] the following scheme:— "1. Red excites strongly the fibres sensitive to red, and feebly the other two. "2. Yellow excites moderately the fibres sensitive to red and green, feebly the violet. "4. Blue excites moderately the fibres sensitive to green and violet, feebly the red. "5. Violet excites strongly the fibres sensitive to violet, feebly the other two. "6. When the excitation is nearly equal for the three kinds of fibres, the sensation is white." This theory cannot be regarded as more than a provisional hypothesis. Still, by its means we can explain many colour-phenomena. It is well known, for example, that if we gaze steadily at a red object, and then look aside at a grey surface, an after-image of the object will be seen of a blue colour. According to the theory, the red fibres have been tired and cannot so readily answer to stimulation. Over this part of the retina, therefore, the effect of grey light is to stimulate normally the fibres sensitive to green and violet, but only slightly those sensitive to red, owing to their tired condition. The result will be, as we see from the above scheme (4), the sensation of blue. Colour-blind people, on this view, are those in whom one set of the fibres, generally the red or the green, are lacking or ill developed. We may, perhaps, with advantage restate this theory in terms of chemical change, or metabolism. On this view three kinds of "explosives" are developed in the retinal cones; for it is seemingly the cones, rather than the rods, which are concerned in colour-vision. All three explosive substances are unstable; but one, which we may call R., is especially unstable for the longer waves of the spectrum; another, G., for the waves of mid-period; a third, V., for those of smallest wave-length. Suppose that R. only were developed. If, then, we were to look at a band of light spread out in spectrum wave-lengths, we should see a band[FE] of monochromatic r. light. Its centre would be bright, and here would be the maximum instability of R. On either side it would fade away. The Normally, all three bands are developed, and their blended overlapping gives the colours of the rainbow. For this reason the monochromatic bands r., g., and v. are unknown to us in experience. All the colour-tints we know are blended tints. What we call full-red light causes strong disruptive change in R., but decomposes slightly G., and probably also, but in much less degree, V. Whether R., G., and V. are all three present in each cone, or whether they are each developed in separate cones, we do not know for certain. Nor are we certain that there are separate nerve-fibres for the transmission of stimuli due to R., G., and V. When we look steadily at a red object we cause the disruption of R.; and since it takes some time for the reformation and reconstitution of this explosive substance, on turning the eye to a grey surface, G. and V. are alone, or in preponderating proportions, caused to undergo disruption. Hence the phenomena of complementary after-images. It is not merely a matter of the tiring of certain nerve-fibres, but a using-up of the explosive material in certain of the cones. What is called colour-blindness is probably due to one of several abnormal conditions. It is possible that in some cases R., G., or V. may be entirely absent. More frequently To test the variation, if any, in the limits of instability for R. and V., or in any case in the limits of colour-vision at the red end and at the violet end of the spectrum, in apparently normal individuals, my friend and colleague, Mr. A. P. Chattock, made, at my suggestion, a number of observations on some of the students of the University College, Bristol, to whom my best thanks are due for their kind willingness to be submitted to experiment. The instrument used[FF] was a single-prism spectro-goniometer. In the accompanying diagram (Fig. 33) the results of some of these observations are graphically shown. The middle part of the spectrum, between the wave-lengths 420 and 740 millionths of a millimetre, is omitted, only the red end and the violet end being shown. The observations on thirty-four individuals, seventeen men and seventeen women, all under thirty years of age, are given for both eyes. The left-hand vertical line of each pair stands for the right eye in each case. To the left of the table are placed the wave-lengths in millionths of a millimetre. Take, for example, the first pair of vertical lines. The It is seen that there is more variation at the red end than at the violet end of the spectrum, and this notwithstanding that the violet rays are more spread out by the prism than the red rays. It is seen that the two eyes are often markedly different. This is not due to inaccuracy of observation, for certain individuals in which this occurred were tested several times with similar results. It is seen that the variations at the red end and the violet end are often independent, and that the absolute length of the visible spectrum differs in different individuals. The following table presents these observations and a few others in another light:—
The individual N showed signs of colour-blindness, and is therefore not included in the table, but entered separately. He was unable to recognize the C line of the hydrogen spectrum (wave-length 656), which was brilliantly obvious to the normal eye. It is impossible here to do more than just touch the fringe of the difficult subject of colour-vision. And the only further fact that can here be noticed is that trichromatic colour-vision is apparently in us limited to the yellow-spot and its immediate neighbourhood. Around this is an area which is said to be bichromatic—all of us being, for this area, more or less green-blind. In the peripheral area around this, colour is indistinguishable, and we are only sensitive to light and shade. So far as the structure of the retina is concerned, we may notice in this connection that in the central region of most complete trichromatic vision there are cones only; around the yellow spot each cone is surrounded by a circle of rods; and further out into the peripheral region by two, three, or more circles of rods. Concerning the sense of sight in the lower mammals little need be said. In many cases the acuteness of vision is remarkable. Mr. Romanes's experiments on Sally, the bald-headed chimpanzee at Regent's Park, led him to conclude that she was colour-blind, but I question whether the experiments described quite justify this conclusion. Sir John Lubbock was unable to teach his intelligent dog Van to distinguish between coloured cards; but the failure was as complete when the cards were marked respectively with one, two, or three dark bands. We are not justified, therefore, in ascribing the failure to colour-blindness. The real failure, probably, was in each case to make the animal understand what was wanted. Bulls are, at any rate, It is said that nocturnal animals, such as mice, bats, and hedgehogs, have no retinal cones; and if the cones are associated with colour-vision, they may not improbably be unable to distinguish colours. Some moles are blind (e.g. the Cape golden mole). But the common European mole, though the eyes are exceedingly minute (1/25 of an inch in diameter), has the organ fairly developed, and is even said not to be very short-sighted. It is protected by long hairs when the animal is burrowing, and is only used when it comes to the surface of the ground. It is probably in birds that vision reaches its maximum of acuteness. A tame jackdaw will show signs of uneasiness when seemingly nothing is visible in the sky. Presently, far up, a mere speck in the blue, a hawk will come within the range of far-sighted human vision. Steadily watch the speck as the hawk soars past, until it ceases to be visible; the jackdaw will still keep casting his eye anxiously upward for some little time. He may be only watching for the possible reappearance of the hawk. But just as he saw it before man could see it, so probably he still watches it after, to man's sight, it has become invisible. So, too, for nearer minute objects, the swift, as it wheels through the summer air, presumably sees the minute insects which constitute its food. And every one must have noticed how domestic fowls will pick out from among the sand-grains almost infinitesimal crumbs. It is probable that the area of acute vision is much more widely diffused over the retina of birds than it is with us. In any case, the cones are more uniformly and more abundantly distributed over the general retinal surface. An exceedingly interesting and important peculiarity in the retina of birds, which they share with some reptiles and fishes, is the development, in the cones, of coloured globules. "The retinÆ of many birds, especially of the finch, the pigeon, and the domestic fowl, have been carefully examined by Dr. Waelchli, who finds that near the These facts are of exceeding interest. They seem to show that for these birds the retinal explosives are not the same as for us. They are R., O., and G. Moreover, the colour-globules will have the effect of excluding the phenomena of overlapping. For each kind of cone the spectrum must be limited to the narrow spectral band transmissible through the associated colour-globule. If these facts be so, it is not too much to say that the colour-vision of birds must be so utterly different from that of human beings, that, being human beings, we are and must remain unable to conceive its nature. The factors being different, and the blending of the factors by overlap being, by specially developed structures, lessened or excluded, the whole set of resulting phenomena must be different from ours. And this is a fact of the utmost importance when we consider the phenomena of sexual selection among birds, and those theories of coloration in insects which involve a colour-sense in birds. In fishes, from their aquatic habit, the lens and dioptric apparatus are specially modified, in accordance with the denser medium in which they live; and one curious fish, the Surinam sprat, is stated to have the upper part of the lens suited for aerial, and the lower part for aquatic vision. Mr. Bateson[FI] has made some interesting observations on the sense of sight in fishes. He finds that in the great majority of fishes the shape and size of the pupil do not alter materially in accordance with the intensity of the light. The chief exceptions are among the Elasmobranchs (dog-fishes and skates). In the torpedo the lower limb of the iris rises so as almost to close the pupil, leaving a horizontal slit at the upper part of the eye. In the rough dog-fish, the angel-fish, and the nurse-hound, the pupil closes by day, forming merely an oblique slit. In the skate a fern-like process descends from the upper limb of Among diurnal fishes belonging to the group of the bony fishes (Teleosteans), the turbot, the brill, and the weever have a semicircular flap from the upper edge of the iris, which partially covers the pupil by day, but is almost wholly retracted at night. None of the fishes observed by Mr. Bateson appears to distinguish food (worms) at a greater horizontal distance than about four feet, and for most of them the vertical limit seemed to be about three feet; but the plaice at the bottom of the tank perceived worms when at the surface of the water, being about five feet above them. Most of them exhibited little power of seeing an object below them. But though the distance of clear vision seems to be so short for small objects in the water, many of these fish (plaice, mullet, bream) notice a man on the other side of the room, distant about fifteen feet from the window of the tank. The sight of some fishes, such as the wrasses (LabridÆ), is admirably adapted for vision at very close quarters. "I have often seen," says Mr. Bateson, "a large wrasse search the sand for shrimps, turning sideways, and looking with either eye independently, like a chamÆleon. Its vision is so good that it can see a shrimp with certainty when the whole body is buried in grey sand excepting the antennÆ and antenna-plates. It should be borne in mind that, if the sand be fine, a shrimp will bury itself absolutely, digging with its swimmerets, kicking the sand forwards with its chelÆ, finally raking the sand over its back, and gently levelling it with its antennÆ; but if the least bit be exposed, the wrasses will find it in spite of its protective coloration." Fig. 34 Fig. 34.—Pineal eye. Modified eye-scale of a small lizard, Varanus benekalensis. (After Baldwin Spencer.) Although it is probably not functional in any existing form, mention must here be made of the median or pineal eye. On the head of the common slow-worm, or blind-worm, there is a dark patch surrounding a brighter spot. To these invertebrates we must now turn. Fig. 35.—Skull of Melanerpeton. A Labyrinthodont amphibian from the Permian of Bohemia (after Fritsch). × 4. Pa., the parietal foramen.] Insects have eyes of two kinds. If we examine with a lens the head of a bee, we shall see, on either side, the large compound or facetted eye; but in addition to these there is on the forehead or vertex a triangle of three small, bright, simple eyes, or ocelli. These ocelli, or eyelets, differ, in different insects, as to the details of their structure; but in general Fig. 36 Fig. 36.—Eyes and eyelets of bee. A. Drone. B. Worker.] These facetted eyes, which are found in both insects and crustacea, have apparently a more complex structure than the ocelli. Externally—in the bee, for example—the surface is seen to be divided up into a great number of hexagonal areas, each of which is called a facet, and forms (in some insects, but not in all) a little lens. Of these the queen bee has on each side nearly five thousand; the worker some six thousand; and the drone upwards of twelve thousand; while a dragon-fly (Æschna) is stated to have twenty thousand. Beneath each facet (in transverse section, Fig. 37) is a crystalline cone, its base applied to the lens, its apex embraced by a group of elongated cells, in the midst of which is a nerve-rod which is stated to be in direct connection with the fibres of the optic nerve. Dark pigment is developed around the crystalline cones. And retinal purple is said to be present in the cells which underlie it. With regard to these facetted eyes there has been much discussion. The question is—Is each facetted organ an eye, or is it an aggregate of eyes? To this question the older naturalists answered confidently—An aggregate. A simple experiment seems to warrant this conclusion. If the facetted surface be cleared of its internal structures (the crystalline cones, etc.) and placed under the microscope, each lens may, at a suitable distance of the object-glass, Fig. 37 Fig. 37.—Eye of fly. Transverse section through head. (After Hickson.) But what, it may be asked, can be the purpose of an eye-structure which gives, not an image, but merely a spot of light? The answer to this question can only be found when it is remembered that there are thousands of these facets and cones giving thousands of spots of light. The somewhat divergent cones and facets of the insect's eye (Fig. 37) embrace, as a whole, an extended field of vision; each has its special point in that field; and each conveys to the nerve-rod which lies beneath it a stimulation in accordance with the brightness, or intensity, or quality of that special point of the field to which it is directed. The external field of vision is thus reproduced in miniature mosaic at the points of the crystalline cones—thus there is produced by the juxtaposition of contiguous points a stippled image. And it must be remembered that, even in human vision, the stimulation is not that of a continuum, but is Fig. 38 Fig. 38.—Diagram of mosaic vision.] In the vertebrate the image is produced by a lens; in the insect's eye, by the elongated cones. How this is effected will be readily seen with the aid of the diagram. At a b are a number of transparent rods, separated by pigmented material absorbent of light. They represent the crystalline cones. At c d is an arrow placed in front of them; at e f is a screen placed behind them. Rays of light start in all directions from any point, c, of the arrow; but of these only that which passes straight down one of the transparent rods reaches the screen. Those which pass obliquely into other rods are absorbed by the pigmented material. Similarly with rays starting from any other point of the arrow. Only those which, in each case, pass straight down one of the rods reach the screen. Thus there is produced a reduced stippled image, c'd', of the arrow. There has been a good deal of discussion as to the relative functions of the ocelli and the facetted eyes of insects. The view generally held is that the ocelli are specially useful in dark places and for near vision; while the facetted eyes are for more distant sight and for the ascertainment of space-relations. How the two sets of impressions are correlated and co-ordinated in insect-consciousness, who can say?[FJ] The interesting observations of Sir John Lubbock seem to show that insects can distinguish between different colours. "Amongst other experiments," he says,[FK] "I Passing now to the crustacea, we find in them eyes of the same type as in insects; but in the higher crustacea ocelli are absent. In the crabs and lobsters the eyes are seated on little movable pedestals; in the former the crystalline cones are very long, in the latter they are short. There can be little doubt that vision is by no means wanting in acuteness in an animal which, like the lobster, can dart into a small hole in the rocks with unerring aim from a considerable distance. The experiments of Sir John Lubbock have shown that the little water-flea (Daphnia) can distinguish differences of colour, yellows and greens being preferred to blues or reds. Among the molluscs there are great differences in the power of sight. Most bivalves, like the mussel, are blind. Interesting stages in the development of the eye may be seen in such forms as the limpet, Trochus and Murex. The limpet has simply an optic pit, the Trochus a pit nearly closed at the orifice and filled with a vitreous mass, and the Murex a spherical organ completely closed in with a definite lens. The snail has a well-developed eye on the hinder and longer horn or tentacle. But it does not seem It is interesting to note that whereas in the cuttle-fishes and most molluscs, the rods of the retina are turned towards the light, in Pecten, Onchidium (a kind of slug), and some others, they are, as in vertebrates, turned from the light. In Pecten the nerve to supply the retina bends round its edge at one side. But in Onchidium it pierces the retina as in vertebrates. In worms, eyes are sometimes present, sometimes absent. In star-fishes and their allies they often occur. In medusÆ (jelly-fish) they are sometimes found on the margin of the umbrella. Even in lowly organisms, like the infusoria, eye-spots not unfrequently occur. We must remember, however, that, in these lower forms of life, the organs spoken of as eyes or eye-spots merely enable the possessor to distinguish light from darkness. Even when eyes or eye-spots are not developed, the organism seems to be in some cases sensitive to light—using the word "sensitive," once more, in its merely physical acceptation. The earthworm, for example, though it has no eyes, is distinctly sensitive to light; and the same has been shown to be the case with other eyeless organisms. Graber holds that his experiments demonstrate that the eyeless earthworm can distinguish between different colours—in other words, is differentially sensitive to light-waves of different vibration-period—preferring red to blue or green, and green to blue. And the same observer has shown that animals provided with eyes—the newt, for We have not been able to do more than make a rapid survey of the sense of sight as it seems to be developed in the invertebrates and lower animals. The visual organs differ, not only in structure, but in principle. We may, I think, distinguish four types. 1. Organs for the mere appreciation of light or darkness (shadow), exemplified by pigment-spots, with or without concentrating apparatus. 2. Organs for the appreciation of the direction of light or shadow, with or without a lens. The simple retinal eyes of gasteropods, and perhaps in some cases the ocelli of insects, probably belong to this class. 3. True eyes, or organs in which a retinal image is formed, through the instrumentality of a lens, as in vertebrates and cephalopods. 4. The facetted eyes of insects, in which a stippled image is formed, on the principle of mosaic vision. Unfortunately, all these are called indiscriminately eyes, or organs of vision. An infusorian or a snail is said to see. But the terms "eye," "vision," "sight," imply that final excellence to which only the higher animals, each on its own line, have attained. This final excellence probably has its basis and earliest inception in the fact that the functional activity of protoplasm is heightened in the presence of Ætherial vibrations. If, then, we imagine, as a starting-point, a primitive transparent organism with a general susceptibility to the influence of light-vibrations, the formation within its tissues of pigment-granules absorbent of light will render the spots where they occur specially sensitive to the Fig. 39 Fig. 39.—Direction-retina. Simple retina for distinguishing the direction of the source of light or of shadow. In many of the lower animals we find such organs, belonging to our first category, and constituting either eye-spots of pigmented material or simple lenses covering a pigmented area. If we call these eyes, we must remember that in all probability they have no power of what we call vision—only a power of distinguishing light from dark. Where, however, there exists beneath the lens a so-called retina, that is, a layer of rod-like endings of a nerve, it might, at first sight, be thought that there, at any rate, we have true vision. But in all probability, in a great number of cases the retinal rods are simply for the purpose of rendering the organism sensitive, not only to the presence of light, but to its direction. Light straight ahead (a) stimulates the middle rods; from one side (b, c) it is focussed on the rods of the opposite side of the retina; and similarly for intermediate positions. The presence of a retinal layer is thus no infallible sign of a power of vision as apart from mere sensibility to light. Indeed, in a great number of cases, from the convexity and position of the lens, the formation of an image is impossible. Only when it can be shown that a more or less definite image can be focussed on the retina, or can be formed on the principle of mosaic vision, can we justly surmise that a power of true vision is present. I doubt whether this can be shown to be unquestionably the case in any forms but the higher arthropods, the cuttle-fishes and their allies, and the vertebrates. There is one more point for consideration before we leave the sense of sight—Are the limits of vision the same in the lower forms of life as they are in man? or, to put The daphnias were placed in a shallow wooden trough, divided by movable partitions of glass into divisions. Over this was thrown a spectrum of rainbow colours. The partitions were removed, and the daphnias allowed to collect in the differently illuminated parts of the trough. The partitions were then inserted, and the number of crustaceans in each division counted. The following numbers resulted from five such experiments:—
Special experiments seem to show that their limits of vision at the red end of the spectrum coincide approximately with ours; but at the violet end their spectrum is longer than ours. Sir John covered up the visible spectrum, so as to render it dark, and gave the daphnias the option of collecting in this dark space or in the ultra-violet. To human eyes both were alike dark. But not so to the daphnian eye; for while only 14 collected in the covered part, 286 were found in the ultra-violet. The width of the violet visible to man was two inches. Sir John divided the ultra-violet into three spaces of two inches each. Of the 286 daphnias, 261 were in the space nearest the violet, 25 in the next space, and none in the furthest of the three spaces. From which it would seem that, though these little creatures are sensitive to light of higher vibration-period Fig. 40 Fig. 40.—Antennary structures of hymenoptera. (After Lubbock.) a., cuticle; b., hypodermis; c., ordinary hair; d., tactile hair; e., cone; f., depressed hair lying over g. cup with rudimentary hair at the base; h., simple cup; i., champagne-cork-like organ of Forel; k., flask-like organ; l., papilla, with a rudimentary hair at the apex. Sir John Lubbock has an interesting chapter on problematical organs of sense. In the antennÆ of ants and bees there are modified hairs and pits in the integument (at least eight different types, according to Sir John Lubbock), the sensory nature of which is undoubted. But what the sensory nature in each case may be is more or less problematical. Many worms have sense-hairs or bristles of the use of which we are ignorant. Some organs It will thus be seen that, apart from the possibility of unknown receptive organs as completely hidden from anatomical and microscopic scrutiny as the end-organs of our temperature-sense, there are in the lower animals organs which may be fitted to receive modes of influence to which we human folk are not attuned. And what are the physical possibilities? We have seen that, through the telÆsthetic senses—hearing, vision, and the temperature-sense—we are made aware of the vibrations of distant bodies, the effects of which are borne to us on waves of air or of Æther. The limits of hearing with us are between thirty and about forty thousand (or perhaps, in very rare cases, fifty thousand) vibrations per second. But these are by no means the limits of vibrations of the same class. By experiments with sensitive flames,[FN] Lord Rayleigh has detected vibrations of fifty-six thousand per second; and Mr. W. F. Barrett has shown that a sensitive flame two feet long is sensitive to vibrations beyond the limit of his own hearing and that of several of his friends who were present at the experiment. We have some reason to suppose that vibrations too rapid to be audible by man are audible by insects, but not much is known with regard to the exact limits. The following table shows what is known concerning
From this table it will be seen that, apart from the possible extension of sight beyond human limits, there are possibilities of another sense for the ultra-violet actinic vibrations as different from sight as is the infra-red temperature-sense. Moreover, the temperature-sense for us has no scale; there is nothing corresponding to pitch in sound or colour in sight. It may not be so with lower organisms. Insects, for example, may be sensitive to tones of heat. The bee may enjoy a symphony of solar radiance. I am not saying that it is so; I am merely suggesting possibilities which we have not sufficient knowledge to authoritatively deny. We have no right to impose the limits of human sensation on the entire organic world. Insects may have "permanent possibilities of sensation" denied to us. Even within our limits there may be, as we have already seen, great and inconceivable differences. We saw In conclusion, we may return to the point from which we set out. The organism is fitted to respond to certain influences of the external world. The organs for the reception of these influences are the sense-organs. When they are stimulated waves of change are transmitted inwards to the great nerve-centres; they are there co-ordinated, and issue thence to muscles or glands. Thus the organism is fitted to respond to the influences from without. The activities of organisms are in response to stimulation. We have seen that the cells of the organic tissues are like little packets of explosives, and that the changes which occur in the organism may be likened to their explosion and the setting free of the energy stored up in them. The end-organs of the special senses may be regarded as charged with explosives of extreme sensitiveness. Some are fired by a touch; the molecular vibrations of sapid or odorous particles explode others; yet others are fired by the coarser vibrations of sound; others, once more, by the energy of the Ætherial waves. The visual purple is a highly unstable chemical compound of this kind; expose it for a moment to light, and it topples over to a new molecular arrangement, the colour being at the same time discharged. If the retina has been removed from the body, this is all We shall have to consider these activities hereafter. We must now turn to the psychical or mental accompaniments of the explosive disturbances in the brain or other aggregated mass of nerve-cells. |