The words Hypophrygion aulon have also been condemned by Westphal (Aristoxenus, p. 453). He points out the curious contradiction between pros tÊn tÔn aulÔn trypÊsin blepontes and the complaint ti d' esti pros ho blepontes ... ouden eirÊkasin. But if pros tÊn ... blepontes was a marginal gloss, as Westphal suggests, it was doubtless a gloss on aulon, and if so, aulon is presumably sound. Since the aulos was especially a Phrygian instrument, and regularly associated with the Phrygian mode (as we know from Aristotle, see p. 13), nothing is more probable than that there was a variety of flute called Hypo-phrygian, because tuned so as to yield the Hypo-phrygian key, either by itself or as a modulation from the Phrygian. In this scheme the important feature—that which marks it as an advance on the others referred to by Aristoxenus—is the conformity which it exhibits with the diatonic scale. The result of this conformity is that the keys stand in a certain relation to each other. Taking any two, we find that certain notes are common to them. So long as the intervals of pitch were quite arbitrary, or were practically irrational quantities, such as three-quarters of a tone, no such relation could exist. It now became possible to pass from one key to another, i. e. to employ modulation (metabolÊ) as a source of musical effect. This new system had evidently made some progress when Aristoxenus wrote, though it was not perfected, and had not passed into general use. tÊn dekabamona taxin echousa tas symphÔnousas harmonias triodous; prin men s' heptatonon psallon dia tessara pantes HellÊnes, spanian mousan aeiramenoi. 'The triple ways of music that are in concord' must be the three conjunct tetrachords that can be formed with ten notes (b c d e f g a b? c d). This is the scale of the Lesser Perfect System before the addition of the Proslambanomenos. It may be worth noticing also that Thrasyllus uses the words diezeugmenÊ and hyperbolaia in the sense of nÊtÊ diezeugmenÔn and nÊtÊ hyperbolaiÔn (Theon Smyrn. l. c.). The aulos was not exactly a flute. It had a mouthpiece which gave it the character rather of the modern oboe or clarinet: see the Dictionary of Antiquities, s. v. tibia. The panarmonion is not otherwise known, and the passage in Plato does not enable us to decide whether it was a real instrument or only a scale or arrangement of notes. The statement that the ancient diagrams gave a series of twenty-eight successive dieses or quarter-tones has not been explained. The number of quarter-tones in an octave is only twenty-four. Possibly it is a mere error of transcription (?? for ?d). If not, we may perhaps connect it with the seven intervals of the ordinary octave scale, and the simple method by which the enharmonic intervals were expressed in the instrumental notation. It has been explained that raising a note a quarter of a tone was shown by turning it through a quarter of a circle. Thus, our c being denoted by epsilon02, c* was epsilon04, and c? was epsilon03. Now the ancient diagrams, which divided every tone into four parts, must have had a character for c?*, or the note three-quarters of a tone above c. Naturally this would be the remaining position of epsilon02, namely epsilon05. Again, we have seen that when the interval between two notes on the diatonic scale is only a semitone, the result of the notation is to produce a certain number of duplicates, so to speak. Thus: kappa01 stands for b, and therefore kappa02 for c: but c is a note of the original scale, and as such is written gamma01. It may be that the diagrams to which Aristoxenus refers made use of these duplicates: that is to say, they may have made use of all four positions of a character (such as 4kappas) whether the interval to be filled was a tone or a semitone. If so, the seven intervals would give twenty-eight characters (besides the upper octave-note), and apparently therefore twenty-eight dieses. Some traces of this use of characters in four positions have been noticed by Bellermann (Tonleitern, p. 65).] I take this opportunity of thanking Mr. Jones for other help, especially in regard to the subject of this section. Pure Middle Soft Diatonic, viz.— Mixture of Chromatic, viz.— Mixture of Soft Diatonic, viz.— Mixture of diatonon syntonon, viz.— It is added, however, that in their use of this last 'mixture' musicians are in the habit of tuning the cithara in the Pythagorean manner, with two Major tones and a leimma (called diatonon ditoniaion). In the second passage (ii. 16) the scales of the lyre are given first, then those of the cithara with the key of each. The order is the same, except that parypatai comes before tropika (now called tropoi), and lydia is placed last. The words ta de lydia hoi tou toniaiou diatonou [sc. arithmoi periechousi tou dÔriou cannot be correct, not merely because they contradict the statement of the earlier passage that lydia denoted a mixture with diatonon syntonon (or in practice diatonon ditoniaion), but also because the scales that do not admit mixture are placed first in the list in both passages. Hence we should doubtless read ta de lydia hoi [tou migmatos] tou [di]toniaiou diatonou tou DÔriou.] The melody published by Kircher (Musurgia, i. p. 541) as a fragment of the first Pythian ode of Pindar has no attestation, and is generally regarded as a forgery. The transcription of Dr. Crusius, with his conjectural restorations, will be found in the Appendix. I have only introduced one of his corrections here, viz. the note on the second syllable of kateklysen. Some further hints on this part of the subject may possibly be derived from the musical scales in use among nations that have not attained to any form of harmony, such as the Arabians, the Indians, or the Chinese. A valuable collection of these scales is given by Mr. A. J. Ellis at the end of his translation of Helmholtz (Appendix XX. Sect. K, Non-harmonic Scales). Among the most interesting for our purpose are the eight mediaeval Arabian scales given on the authority of Professor Land (nos. 54-61). The first three of these—called 'Ochaq, Nawa and Boasili—follow the Pythagorean intonation, and answer respectively to the Hypo-phrygian, Phrygian, and Mixo-lydian species of the octave. The next two—Rast and Zenkouleh—are also Hypo-phrygian in species, but the Third and Sixth are flatter by about an eighth of a tone (the Pythagorean comma). In Zenkouleh the Fifth also is similarly flattened. The last two scales—Hhosaini and Hhidjazi—are Phrygian: but the Second and Fifth, and in the case of Hhidjazi also the Sixth, are flatter by the interval of a comma. The remaining scale, called Rahawi, does not fall under any species, since the semitones are between the Third and Fourth, and again between the Fifth and Sixth. It will be seen that in general character—though by no means in details—this series of scales bears a considerable resemblance to the 'scales of the cithara' as given by Ptolemy (supra, p. 85). In both cases the several scales are distinguished from each other partly by the order of the intervals (species), partly by the intonation, or magnitude of the intervals employed (genus). This latter element is conspicuously absent from the ecclesiastical Modes. According to Ptolemy (i. 13) the Pythagorean philosopher Archytas was the author of a new division of the tetrachord for each of the three genera. In it the natural Major Third (5: 4) was given for the large interval of the Enharmonic, in place of the Pythagorean ditone (81: 64); and the Diatonic was the same as the Middle Soft Diatonic of Ptolemy. But, as Westphal long ago pointed out (Harmonik und MelopÖie, p. 230, ed. 1863), this scheme is probably the work of the later Pythagorean school. It seems to be unknown to Plato and Aristoxenus,—the latter wrote a life of Archytas—and also to Euclid, as we have seen. The next scheme of musical ratios is that of Eratosthenes, who makes no use of the natural Major Third. |