CHAPTER V.

Previous

STRATIFIED ROCKS OF MECHANICAL ORIGIN—THEORY DEVELOPED AND ILLUSTRATED.

Formation of stratified rocks ascribed to the agency of natural causes—This theory supported by facts—The argument stated—Examples of mechanical rocks—Materials of which they are composed—Origin and history of these materials traced out—Process of deposition—Process of consolidation—Instances of consolidation by pressure—Consolidation perfected by natural cements—Curious illustrations—Consolidation of sandstone in Cornwall—Arrangement of strata explained by intermittent action of the agents of Denudation.

The Stratification of Rocks is one of the most remarkable features which the Crust of the Earth presents to our notice; and the principles by which this phenomenon is explained belong to the very foundation of Geological theory. It is now universally agreed that the successive layers or strata, which constitute such a very large proportion of the Earth’s Crust, and which cannot fail to attract the notice even of the most careless observer, have been slowly built up during a long series of ages by the action of natural causes. In support of this bold and comprehensive theory, geologists appeal to the operations which are going on in nature at the present day, or which have been observed and recorded within historic times. There is a vast machinery, they say, even now at work all over the world, breaking up the rocks that appear at the surface of the Earth, transporting the materials to different sites, and there constructing new strata, just the counterpart of those which we see piled up one above the other, wherever a section of the Earth’s Crust is exposed to view. It is given to us, therefore, on the one hand to contemplate the finished work as it exists in the Crust of the Earth, and on the other, to examine the work still in progress upon its surface; and if both are found to agree in all their most remarkable characteristics, it is not unreasonable to infer that the one was produced in bygone ages by the very same causes that are now busy in the production of the other.

In the examination of this argument we first turned our attention to the numerous and powerful agents that are now employed in the breaking up and transporting of existing rocks. It was impossible within our narrow limits to enumerate them all. But we selected those which are at the same time the most familiar in their operations, and the most striking in their results:—mighty rivers discharging daily and hourly into the sea the accumulated spoils of vast continents; the breakers of the ocean dashing with unceasing energy against all the cliffs and coasts of the world; the tides and currents of the sea taking up the ruins which the breakers have made, and carrying them far away to the lonely depths of the ocean; the frozen rain bursting massive rocks asunder with its expansive force, and sending the fragments over lofty cliffs and steep precipices to become the prey of roaring mountain torrents, or perhaps, more fortunate, to find a place of tranquil rest on the bosom of the glittering Glacier; then this wondrous Glacier itself, a moving sea of ice, bearing along its ponderous burden from the summits of lofty mountains far down into the smiling plains, and meanwhile, with tremendous power, grinding, and furrowing, and wearing away the floor of the valley, and leaving behind it an impress which even time cannot efface; and lastly, the massive Icebergs which stud the northern and southern seas, drifting along like floating islands above the fathomless abysses of the ocean, and scattering their huge boulders over the surface of submarine mountains and valleys.

All these phenomena have been learned from actual and repeated observation. They are not philosophical speculations, but ascertained facts. We cannot doubt, therefore, that the work of demolition is going on; it remains for us now to inquire about the work of reconstruction.

The reader will remember that Geologists divide the stratified rocks into three distinct classes, Mechanical, Chemical, and Organic. This distinction, they say, is founded on the actual operations of Nature. From a close examination of the natural agents now at work in the world, it appears that some strata are being formed chiefly by the action of mechanical force; others chiefly by the influence of chemical laws; and others again chiefly by the intervention of organic life. Thus we have three distinct classes of rock at present coming into existence, each exhibiting its own peculiar characteristics, and each, moreover, having its counterpart among the strata that compose the Crust of the Earth. We shall now proceed to set forth some of the evidence that may be advanced in favor of these important conclusions, beginning with those rocks that are called Mechanical.

And first it is important to have, at least, a general idea of the appearance which Mechanical Rocks present to the eye. We shall take three familiar examples, Conglomerate, Sandstone, and Clay. Conglomerate, or Pudding-stone as it is sometimes called, is composed of pebbles, gravel, and sand, more or less compacted together, and generally forming a hard and solid mass. The various materials of which it is composed, though united in the one rock, nevertheless remain their own external forms, and may be distinctly recognized even by the unpractised eye. Sandstone, as the name implies, is made up of grains of sand closely compressed and cemented together. The quality and appearance of this rock vary very much according to the size and character of its constituent particles. Often the grains of sand are as large as peas, or even larger; sometimes they are so minute that they cannot be distinguished without the aid of a lens. For the most part they consist of quartz, with grains of limestone intermixed; and they are usually rounded, as if by the action of running water. Clay is a rather vague and general term, now commonly employed to denote any finely-divided mineral matter which contains from ten to thirty per cent. of Alumina, and is thereby rendered plastic, and capable, when softened with water, of being moulded like paste with the hand. It occurs in many different forms among the strata of the Earth, according to the different minerals that enter into its composition and the different influences to which it has been subjected. Marl and Loam may be taken as well-known illustrations: the former is a clay in which there is a large proportion of calcareous matter; the latter is a mixture of clay and sand. Sometimes by pressure clay is condensed into a kind of slaty rock called Shale, which has the property of being easily split up into an immense number of thin plates or laminÆ.

It should be remembered that there is not always a perfect uniformity in the structure of these rocks. In Conglomerate, for example, the pebbles may be as large as cannon balls, or they may be only the size of walnuts. So, too, we have every variety of fineness and coarseness in the quality of Sandstone. Again, both Conglomerate and Sandstone are often largely adulterated with clay, and on the other hand, clay will sometimes contain more than its usual proportion of sand or lime. Lastly, these materials are in one place compacted into hard and solid rock, in another they are found in a loose and incoherent condition.

But amidst all these varieties of form and texture, the rocks we have been describing generally preserve their peculiar characteristics, and with a little experience can be easily recognized. They are found to constitute a very large part, perhaps we might say the larger part, of the stratified rocks in every country that has hitherto been explored by Geologists. Wherever we go we are met by the same familiar appearances;—beds of Conglomerate, Sandstone, Clay, Marl, Shale, recurring again and again through a series of many hundred strata, sometimes in one order, and sometimes in another; sometimes without any formation of a different kind intervening, and sometimes alternating with limestone or other rocks of which we shall speak hereafter.

Such is the general character and appearance of those strata which are known among Geologists as Aqueous Rocks of Mechanical origin. Now, it must at once strike the reader, that these rocks are made up of just those very materials—the same both in kind and in form—that we have already shown to be daily prepared and fashioned by a vast and complex machinery in the great workshop of Nature. He will remember how enormous blocks are detached from the mountain side, or from the cliffs on the seashore, and broken up into fragments; how the fragments in time become pebbles, sand, and mud; and how these are caught up by rivers, tides, and currents, and carried far away to sea. Here we have certainly all the materials that are necessary for the building up of Conglomerate, Sandstone, and Shale. We have seen how they are prepared by the hand of Nature, how they are moulded into shape, how they are transported from place to place. Let us now pursue the sequel of their history, and follow them on to the end.

It is plain they cannot remain forever suspended in water; sooner or later they must fall to the bottom. Yet they will not all fall together. For though all are carried downward by the one force of gravity, those materials that are smaller and lighter will be more impeded by the resistance of the water. The pebbles and coarse gravel will be the first to reach the bottom, then the sand, and last of all the fine, impalpable mud. Thus, as the current sweeps along in its course, the sediment which it bears away from the land will be in a manner sorted, and three distinct layers of different materials will be deposited in the bed of the ocean;—first, nearest to the shore, a layer of pebbles and coarse gravel, then a layer of sand, and last of all a layer of fine mud or clay. This is the first step in the construction of stratified rock. To complete the work nothing more is necessary than the consolidation of these loose and incoherent materials. If this could be accomplished, then we should have a solid stratum of Conglomerate, a solid stratum of Sandstone, and a solid stratum of Shale formed in the bed of the ocean.

With regard to this operation, however, we cannot hope for the advantage we have hitherto enjoyed, of actual observation. The process of consolidation, if it take place at all, is going on in the depths of the Sea. But though it is thus removed beyond the reach of our senses, it is not beyond the reach of our intelligence. We may borrow the torch of Science, and search even into the hidden recesses of Nature’s secret laboratory.

In the first place, a partial consolidation of clay and sand, and even of gravel, may take place under the influence of pressure alone. Many of us are familiar with this truth, but few, perhaps, are aware how extensively it is illustrated in the practical arts of life. Here are some curious and interesting examples. The minute fragments of coal which are produced by the friction of larger blocks against one another, and which may be obtained abundantly in the neighborhood of every coal mine, are now manufactured into a solid patent fuel by the simple process of forcible compression. Again, the dust and rubble of black lead, formerly cast aside as useless, are now carefully collected, and by no other force than pressure are converted into a solid mass, fit to be employed in the manufacture of lead-pencils. “The graphite or black lead of commerce,” says Sir Charles Lyell, “having become very scarce, Mr. Brockedon contrived a method by which the dust of the purer portions of the mineral found in Borrowdale might be recomposed into a mass as dense and as compact as native graphite. The powder of graphite is first carefully prepared and freed from air, and placed under a powerful press on a strong steel die, with air-tight fittings. It is then struck several blows, each of a power of a thousand tons; after which operation the powder is so perfectly solidified that it can be cut for pencils, and exhibits, when broken, the same texture as native graphite.”35 An instance yet more to our purpose occurs in the experiments made to try the force of gunpowder. Leathern bags filled with sand are put into the mortar that is to receive the cannon-ball at a distance of fifty feet from the mouth of the gun; and the sand is often compressed by the percussion of the ball into a solid mass of Sandstone.36 Now the deposits of which we are speaking cannot fail to be subjected to a very powerful and a very constant compressing force. For, since the process of deposition is always going on, the matter which is deposited to-day will to-morrow be covered with a new layer, and in the course of ages it may lie beneath an immense pile of mineral matter, hundreds or even thousands of feet in thickness.

But in fact there is another and more important agent at work. When the harder and more compact blocks of Conglomerate and Sandstone are subjected to a close analysis in the laboratory of the chemist, it is found that they are strongly cemented together, sometimes by a solution of lime filling up the interstices between the grains or pebbles, sometimes by a solution of silica, sometimes by a solution of iron. Now this discovery affords a useful clue when we come to study the present operations of Nature. It is to the agency of a mineral cement we must look for the perfect consolidation of Mechanical Rocks. Let us see if such a cement can be found.

It is well known that the water of rivers, lakes, and springs, is more or less charged with carbonic acid gas; and therefore, when it comes in contact with limestone, it dissolves a portion of the lime and holds it in solution. Hence it follows that in every part of the world there exists an abundant store of calcareous cement. Again, our readers must have observed the brownish, rusty color sometimes produced by streams on the surface of rocks and herbage. This is the result of the iron with which the streams are impregnated: and we are informed by scientific inquirers that water containing a solution of iron prevails very generally in almost all countries. The solution of silica in water is not so common; because pure silica cannot be dissolved by water except at a very high temperature. Nevertheless, it has been clearly demonstrated by observation, that silica, where it occurs in certain combinations with other mineral substances, may be dissolved readily enough: for instance, in the decomposition of felspar, and of all rocks in which felspar is an ingredient, silica is carried off in a state of solution.37 And since these rocks are very numerous, and distributed over every part of the earth, we may fairly conclude that a solution of silica exists very abundantly in nature.

Now when we bear in mind that we have on the one hand in the Crust of the Earth, solid strata of Conglomerate and Sandstone, exhibiting the evident operation of these mineral cements; and on the other hand, near the surface, the loose materials of Conglomerate and Sandstone as if ready to be cemented, and close at hand the cementing mineral itself in a convenient form, it is not unreasonable to assume that the process should actually take place;—that water highly charged with iron, or lime, or silica, should filter through the loose gravel and sand, depositing its mineral cement as it passes along, and converting the newly-formed strata into compact and solid rock.

But this conclusion does not rest upon antecedent probability alone. We have proof unquestionable that a process such as we have described is actually going on. In the dredging of the river Thames large masses of solid Conglomerate are found from time to time, firmly compacted together by a ferruginous cement. And there is internal evidence that the process of solidification has been effected by natural causes within historic times; for it happens not unfrequently that Roman coins and fragments of pottery are found embedded in the solid block of stone. Similar discoveries were made in deepening the bed of the river Dove in Derbyshire, about the year 1832. Thousands of silver coins were found about ten feet under the surface, firmly cemented into a hard Conglomerate. Several of these coins bear dates of the thirteenth and fourteenth centuries; and therefore the pebbles which form the rock must have been deposited and converted into a solid mass since that time. But we must not suppose that so long an interval is necessary for the consolidation of rocks. In the early part of the present century a vessel called the Thetis was wrecked off cape Frio on the coast of Brazil. A few months afterward, when an attempt was successfully made to recover the dollars and other treasures which had gone to the bottom with the wreck, they were found completely enveloped in solid masses of quartzose Sandstone. The materials of the newly-formed stone were in this case manifestly derived from the granite rocks of the Brazilian coast.38

In many parts of the Mediterranean, and along its shores, this process is known to be going on with equal rapidity. “The new-formed strata of Asia Minor,” writes Sir Charles Lyell, “consists of stone, not of loose, incoherent materials. Almost all the streamlets and rivers, like many of those in Tuscany and the south of Italy, hold abundance of carbonate of lime in solution, and precipitate Travertine, or sometimes bind together the sand and gravel into solid Sandstones and Conglomerates; every delta and sandbar thus acquires solidity, which often prevents streams from forcing their way through them, so that their mouths are constantly changing their position.”39 In the Museum at Montpelier is exhibited a cannon embedded in a crystalline calcareous rock which was taken up from the bed of the Mediterranean near the mouth of the Rhone.40

To these examples of the solidification of rock within recent times we are tempted to add one more, taken from a Memoir published by the late Dr. Paris in the Transactions of the Royal Geological Society of Cornwall. “A sandstone occurs in various parts of the northern coast of Cornwall, which affords a most instructive example of a recent formation, since we here actually detect Nature at work in converting loose sand into solid rock. A very considerable portion of the northern coast of Cornwall is covered with calcareous sand, consisting of minute particles of comminuted shells, which in some places has accumulated in quantities so great, as to have formed hills of from forty to fifty feet in elevation. In digging into these sand-hills, or upon the occasional removal of some part of them by the winds, the remains of houses may be seen; and in places where the churchyards have been overwhelmed, a great number of human bones may be found. The sand is supposed to have been originally brought from the sea by hurricanes, probably at a remote period. It first appears in a state of slight but increasing aggregation on several parts of the shore in the Bay of St. Ives; but on approaching the Gwythian River it becomes more extensive and indurated.... It is around the promontory of New Kaye that the most extensive formation of Sandstone takes place. Here it may be seen in different stages of induration, from a state in which it is too friable to be detached from the rock on which it reposes, to a hardness so considerable that it requires a very violent blow from a sledge to break it. Buildings are constructed of it; the church of Cranstock is entirely built with it; and it is also employed for various articles of domestic and agricultural uses.”

No reasonable doubt can therefore remain that the loose beds of gravel, sand, and clay, which, as we have already seen, are deposited from day to day, and from year to year, and from century to century, beneath the waters of the ocean, may be converted in the course of time by natural agents into solid rocks of Conglomerate, of Sandstone, and of Shale. But this is not enough. It yet remains for us to explain how these solid rocks come to be arranged in a series of distinct layers or strata. The reader will remember that the supply of materials in any given area of the ocean is not fixed and continuous, but, on the contrary, variable and intermittent. During the periodical rains within the tropics, and during the melting of the snows in high latitudes or in mountain regions, the rivers become enormously swollen, and carry down a far greater quantity of sediment than at other seasons. The waste of cliffs, too, by the action of the waves, is much greater in winter than in summer. Thus, while at one season a particular river or current may be comparatively free from sediment, at another it will carry along in its turbid course an almost incredible freight of mineral matter. We have a notable example in the case of the Ganges. The bulk of earthy matter which this river discharges into the sea during the four months of rain, averages about 50,000,000 of cubic feet per day; whereas the daily discharge during the three months of hot weather is considerably less than one hundredth part of that amount.41

Besides this variety in the quantity of materials carried, there is also a great variety in the velocity both of rivers and of currents; and therefore they will not always carry the same materials to the same distance; for the less rapid the stream, the sooner will the sediment fall to the bottom. We may add that currents, as is well known, often change their direction from various causes, and thus at different times they will carry the waste of the land to different parts of the ocean.

From these considerations two conclusions may be fairly deduced: First, that the process of deposition may often go on very rapidly for a time over a given area, and then altogether cease, and after an interval begin again. In this way time may be allowed for one deposit to acquire more or less consistency before the next is superimposed; and thus a succession of distinct beds will be produced. Secondly, we may infer that the same precise materials will not always be deposited over the same area; at one time it will be sand, at another gravel, at another clay, at another some combination of these or other mineral substances. And thus it may happen that the strata deposited in successive periods of time shall not only be distinct one from the other, but composed of different materials;—that there shall be, in fact, as we so often see that there are, beds of Conglomerate, Sandstone, Clay, Marl, and other rocks, succeeding one another in every variety of order.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page