CHAPTER XI THE CONSTELLATIONS

Previous

From the very earliest times men have watched the stars, felt their mysterious influence, tried to discover what they were, and noted their rising and setting. They classified them into groups, called constellations, and gave such groups the names of figures and animals, according to the positions of the stars composing them. Some of these imaginary figures seem to us so wildly ridiculous that we cannot conceive how anyone could have gone so far out of their way as to invent them. But they have been long sanctioned by custom, so now, though we find it difficult to recognize in scattered groups of stars any likeness to a fish or a ram or a bear; we still call the constellations by their old names for convenience in referring to them.

CONSTELLATIONS NEAR THE POLE STAR. CONSTELLATIONS NEAR THE POLE STAR.
View larger image

Supposing the axis of the earth were quite upright, straight up and down in regard to the plane at which the earth goes round the sun, then we should always see the same set of stars from the Northern and the same set of stars from the Southern Hemispheres all the year round. But as the axis is tilted slightly, we can, during our nights in the winter in the Northern Hemisphere, see more of the sky to the south than we can in the summer; and in the Southern Hemisphere just the reverse is the case, far more stars to the north can be seen in the winter than in the summer. But always, whether it is winter or summer, there is one fixed point in each hemisphere round which all the other stars seem to swing, and this is the point immediately over the North or the South Poles. There is, luckily, a bright star almost at the point at which the North Pole would seem to strike the sky were it infinitely lengthened. This is not one of the brightest stars in the sky, but quite bright enough to serve the purpose, and if we stand with our faces towards it, we can be sure we are looking due north. How can we discover this star for ourselves in the sky? Go out on any starlight night when the sky is clear, and see if you can find a very conspicuous set of seven stars called the Great Bear. I shall not describe the Great Bear, because every child ought to know it already, and if they don't, they can ask the first grown-up person they meet, and they will certainly be told. (See map.)

Having found the Great Bear, you have only to draw an imaginary line between the two last stars forming the square on the side away from the tail, and carry it on about three times as far as the distance between those two stars, and you will come straight to the Pole Star. The two stars in the Great Bear which help one to find it are called the Pointers, because they point to it.

The Great Bear is one of the constellations known from the oldest times; it is also sometimes called Charles's Wain, the Dipper, or the Plough. It is always easily seen in England, and seems to swing round the Pole Star as if held by an invisible rope tied to the Pointers. Besides the Great Bear there is, not far from it, the Little Bear, which is really very like it, only smaller and harder to find. The Pole Star is the last star in its tail; from it two small stars lead away parallel to the Great Bear, and they bring the eye to a small pair which form one side of a square just like that in the Great Bear. But the whole of the Little Bear is turned the opposite way from the Great Bear, and the tail points in the opposite direction. And when you come to think of it, it is very ridiculous to have called these groups Bears at all, or to talk about tails, for bears have no tails! So it would have been better to have called them foxes or dogs, or almost any other animal rather than bears.

Now, if you look at the sky on the opposite side of the Pole Star from the Great Bear, you will see a clearly marked capital W made up of five or six bright stars. This is called Cassiopeia, or the Lady's Chair.

In looking at Cassiopeia you cannot help noticing that there is a zone or broad band of very many stars, some exceedingly small, which apparently runs right across the sky like a ragged hoop, and Cassiopeia seems to be set in or on it. This band is called the Milky Way, and crosses not only our northern sky, but the southern sky too, thus making a broad girdle round the whole universe. It is very wonderful, and no one has yet been able to explain it. The belt is not uniform and even, but it is here and there broken up into streamers and chips, having the same appearance as a piece of ribbon which has been snipped about by scissors in pure mischief; or it may be compared to a great river broken up into many channels by rocks and obstacles in its course.

The Milky Way is mainly made up of thousands and thousands of small stars, and many more are revealed by the telescope; but, as we see in Cassiopeia, there are large bright stars in it too, though, of course, these may be infinitely nearer to us, and may only appear to us to be in the Milky Way because they are between us and it.

Now, besides the few constellations that I have mentioned, there are numbers of others, some of which are difficult to discover, as they contain no bright stars. But there are certain constellations which every one should know, because in them may be found some of the brightest stars, those of the first magnitude. Magnitude means size, and it is really absurd for us to say a star is of the first magnitude simply because it appears to us to be large, for, as I have explained already, a small star comparatively near to us might appear larger than a greater one further away. But the word 'magnitude' was used when men really thought stars were large or small according to their appearance, and so it is used to this day. They called the biggest and brightest first magnitude stars. Of these there are not many, only some twenty, in all the sky. The next brightest—about the brightness of the Pole Star and the stars in the Great Bear—are of the second magnitude, and so on, each magnitude containing stars less and less bright. When we come to stars of the sixth magnitude we have reached the limit of our sight, for seventh magnitude stars can only be seen with a telescope. Now that we understand what is meant by the magnitude, we can go back to the constellations and try to find some more.

If you draw an imaginary line across the two stars forming the backbone of the Bear, starting from the end nearest the tail, and continue it onward for a good distance, you will come to a very bright star called Capella, which you will know, because near it are three little ones in a triangle. Now, Capella means a goat, so the small ones are called the kids. In winter Capella gets high up into the sky, and then there is to be seen below her a little cluster called the Pleiades. There is nothing else like this in the whole sky. It is formed of six stars, as it appears to persons of ordinary sight, and these stars are of the sixth magnitude, the lowest that can be seen by the naked eye. But though small, they are set so close together, and appear so brilliant, twinkling like diamonds, that they are one of the most noticeable objects in the heavens. A legend tells that there were once seven stars in the Pleiades clearly visible, and that one has now disappeared. This is sometimes spoken of as 'the lost Pleiad,' but there does not seem to be any foundation for the story. In old days people attached particular holiness or luck to the number seven, and possibly, when they found that there were only six stars in this wonderful group, they invented the story about the seventh.

As the Pleiades rise, a beautiful reddish star of the first magnitude rises beneath them. It is called Aldebaran, and it, as well as the Pleiades, forms a part of the constellation of Taurus the bull. In England we can see in winter below Aldebaran the whole of the constellation of Orion, one of the finest of all the constellations, both for the number of the bright stars it contains and for the extent of the sky it covers. Four bright stars at wide distances enclose an irregular four-sided space in which are set three others close together and slanting downwards. Below these, again, are another three which seem to fall from them, but are not so bright. The figure of Orion as drawn in the old representations of the constellations is a very magnificent one. The three bright stars form his belt, and the three smaller ones the hilt of his sword hanging from it.

If you draw an imaginary line through the stars forming the belt and prolong it downwards slantingly, you will see, in the very height of winter, the brightest star in all the sky, either in the Northern or Southern Hemisphere. This is Sirius, who stands in a class quite by himself, for he is many times brighter than any other first magnitude star. He never rises very high above the horizon here, but on crisp, frosty nights may be seen gleaming like a big diamond between the leafless twigs and boughs of the rime-encrusted trees. Sirius is the Dog Star, and it is perhaps fortunate that, as he is placed, he can be seen sometimes in the southern and sometimes in the northern skies, so that many more people have a chance of looking at his wonderful brilliancy, than if he had been placed near the Pole star. In speaking of the supreme brightness of Sirius among the stars, we must remember that Venus and Jupiter, which outrival him, are not stars, but planets, and that they are much nearer to us. Sirius is so distant that the measures for parallax make hardly any impression on him, but, by repeated experiments, it has now been proved that light takes more than eight years to travel from him to us. So that, if you are eight years old, you are looking at Sirius as he was when you were a baby!

Not far from the Pleiades, to the left as you face them, are to be found two bright stars nearly the same size; these are the Heavenly Twins, or Gemini.

Returning now to the Great Bear, we find, if we draw a line through the middle and last stars of his tail, and carry it on for a little distance, we come fairly near to a cluster of stars in the form of a horseshoe; there is only one fairly bright one in it, and some of the others are quite small, but yet the horseshoe is distinct and very beautiful to look at. This is the Northern Crown. The very bright star not far from it is another first-class star called Arcturus.

To the left of the Northern Crown lies Hercules, which is only mentioned because near it is the point to which the sun with all his system appears at present to be speeding.

For other fascinating constellations, such as Leo or the Lion, Andromeda and Perseus, and the three bright stars by which we recognize Aquila the Eagle, you must wait awhile, unless you can get some one to point them out.

Those which you have noted already are enough to lead you on to search for more.

Perhaps some of you who live in towns and can see only a little strip of sky from the nursery or schoolroom windows have already found this chapter dull, and if so you may skip the rest of it and go on to the next. For the others, however, there is one more thing to know before leaving the subject, and that is the names of the string of constellations forming what is called the Zodiac. You may have heard the rhyme:

'The Ram, the Bull, the Heavenly Twins,
And next the Crab, the Lion shines,
The Virgin and the Scales;
The Scorpion, Archer, and He-goat,
The Man that holds the watering-pot,
The Fish with glittering tails.'

This puts in a form easy to remember the signs of the constellations which lie in the Zodiac, an imaginary belt across the whole heavens. It is very difficult to explain the Zodiac, but I must try. Imagine for a moment the earth moving round its orbit with the sun in the middle. Now, as the earth moves the sun will be seen continually against a different background—that is to say, he will appear to us to move not only across our sky in a day by reason of our rotation, but also along the sky, changing his position among the stars by reason of our revolution. You will say at once that we cannot see the stars when the sun is there, and no more we can. But the stars are there all the same, and every month the sun seems to have moved on into a new constellation, according to astronomers' reckoning. If you count up the names of the constellations in the rhyme, you will find that there are just twelve, one for each month, and at the end of the year the sun has come round to the first one again. The first one is Aries the Ram, and the sun is seen projected or thrown against that part of the sky where Aries is, in April, when we begin spring; this is the first month to astronomers, and not January, as you might suppose. Perhaps you will learn to recognize all the constellations in the Zodiac one day; a few of them, such as the Bull and the Heavenly Twins, you know already if you have followed this chapter.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page