The earth is not the only world that, poised in space, swings around the sun. It is one of a family called the Solar System, which means the system controlled and governed by the sun. When we look up at the glorious sky, star-studded night by night, it might seem to us that the stars move only by reason of the earth's rotation; but when men first began to study the heavens attentively—and this is so long ago that the record of it is not to be found—they noticed that, while every shining object in the sky was apparently moving round us, there were a few which also had another movement, a proper motion of their own, like the moon. These curious stars, which appeared to wander about among the other stars, they called planets, or wanderers. And the reason, which was presently discovered, of our being able to see these movements was that these planets are very much nearer to us than any of the real If we go back for a moment to the illustration of the large lamp representing our sun, we shall This is the solar system, and in it the only thing that shines by its own light is the sun; all the rest, the planets and their moons, shine only because the rays of light from the sun strike on their surfaces and are reflected off again. Our earth shines like that, and from the nearer planets must appear as a brilliant star. The little solar system is separated by distances beyond the realm of thought from the rest of the universe. Vast as are the intervals between ourselves and our planetary neighbours, they are as nothing to the space that separates us from the nearest of the steady shining fixed stars. Why, removed as far from us as the stars, the sun himself would have sunk to a point of light; and as for the planets, the largest of them, Jupiter, could not possibly be seen. Thus, when we look at those stars across the great gulf of space, we know that though we see them they cannot see us, and that to them our sun must seem only a star; con Of the planets you will soon learn to pick out one or two, and will recognize them even if they do change their places—for instance, Venus is at times very conspicuous, shining as an evening star in the west soon after the sun goes down, or us a morning star before he gets up, though you are not so likely to see her then; anyway, she is never found very far from the sun. Jupiter is the only other planet that compares with her in brilliancy, and he shines most beautifully. He is, of course, much further away from us than Venus, but so much larger that he rivals her in brightness. Saturn can be quite easily seen as a conspicuous It is to our earth's family of these eight large planets going steadily round the same sun that we must give our attention first, before going on to the distant stars. Many of the planets are accompanied by satellites or moons, which circle round them. We may say that the sun is our parent—father, mother, what you will—and that the planets are the family of children, and that the moons are their children. Our earth, you see, has only one child, but that a very fine one, of which she may well be proud. When I say that the planets go round the sun in circles I am only speaking generally; as a matter of fact, the orbits of the planets are not perfect circles, though some are more circular than others. Instead of this they are as a circle might look if it were pressed in from two sides, and this is called an ellipse. The path of our own earth round the sun is one of the most nearly circular of them all, and yet even in her orbit she is a good deal nearer to the sun at one time than another. Would you be surprised to hear that she is nearer in our winter and further away in our summer? Yet that is the THE ENGLISH SUMMER (LEFT) AND WINTER (RIGHT). THE ENGLISH SUMMER (LEFT) AND WINTER (RIGHT). When the sun is high overhead, his rays strike down with much more force than when he is low. It is, for instance, hotter at mid-day than in the evening. Now, when the North Pole is bowed toward the sun, the sun appears to us to be higher in the sky. In the British Isles he never climbs quite to the zenith, as we call the point straight above our heads; he always keeps on the southern side of that, so that our shadows are thrown northward at mid-day, but yet he gets nearer to it than he does in winter. Look at the picture of the earth as it is in winter. Then we have long nights and short days, and the sun never appears to climb very high, because we are turned away from him. During the short days we do not receive a great deal of heat, and during the long night the heat we have received has time to evaporate to a great extent. These two reasons—the greater or less height of the sun in the sky and the length of the days—are quite enough to account for the difference between our summer and winter. There is one rather interesting point to remember, and that is that in the Northern Hemisphere, whether it is winter or summer, the sun is south at mid-day, New Zealand and Australia and other countries placed in the Southern Hemisphere, as we are in the Northern, have their summer while we have winter, and winter while we have summer, and their summer is warmer than ours, because it comes when the earth in its journey is three million miles nearer to the sun than in our summer. All this seems to refer to the earth alone, and this chapter should be about the planets; but, after all, what applies to one planet applies to another in some degree, and we can turn to the others with much more interest now to see if their axes are bowed toward the sun as ours is. It is believed that in the case of Mercury, in regard to its path round the sun, the axis is straight up and down; if it is the changes of the seasons must depend on the nearness of Mercury to the sun and nothing else, and as he is a great deal nearer at one time than another, this might make a very considerable difference. Some of the planets are like the earth in regard to the position of their axes, but the two outermost ones, Uranus and Neptune, are very peculiar, for one pole is turned right toward the sun and the other right away from it, so that in There is a curious fact in regard to the distances of the planets from the sun. Each one, after the first, is, very roughly, about double the distance from the sun of the one inside it. This holds good for all the first four, then there is a great gap where we might expect to find another planet, after which follow the four large planets. Now, this gap puzzled astronomers greatly; for though there seemed to be no reason why the planets should be at regular distances one outside the other, yet there the fact was, and that the series should be broken by a missing planet was annoying. So very careful search was made, and a thrill of excitement went all through the scientific world when it was known that a tiny planet had been discovered in the right place. But this was not the end of it, for within a few years three or four more tiny planets were observed not far from the first one, and, as years rolled on, one after another was discovered until now the number amounts to over six hundred and others are perpetually being added to One was that there had been a planet—it might be about the size of Mars—which had burst up in a great explosion, and that these were the pieces—a very interesting and exciting idea, but one which proved to be impossible. The explanation now generally accepted is a little complicated, and to understand it we must go back for a bit. When we were talking of the earth and the moon we realized that once long ago the moon must have been a part of the earth, at a time when the earth was much larger and softer than she now is; to put it in the correct way, we should say when she was less dense. There is no need to explain the word 'dense,' for in its ordinary sense we use it every day, but in an astronomical sense it does not mean exactly the same thing. Everything is made up of minute particles or atoms, and when Now, before there were any planets at all or any sun, in the place of our solar system was a vast gaseous cloud called a nebula, which slowly rotated, and this rotation was the first impulse or force which God gave it. It was not at all dense, and as it rotated a part broke off, and inheriting the first impulse, went on rotating too. The impulse would have sent it off in a straight line, but the pull of gravity from the nebula held it in place, and it circled round; then the nebula, as it rotated, contracted a little, and occupied less space and grew denser, and presently a second piece was thrown off, to become in time another planet. The same process was repeated with Saturn, and then with the huge Jupiter. The nebula was always rotating and always contracting. And as it behaved, so did the planets in their turn; they spun round and cooled and contracted, and the moons were flung off from them, just as they—the planets—had been flung off from the parent nebula. Now, after the original nebula had parted with the mighty mass of Jupiter, it never again made an This theory of the origin of the planets is called the nebula theory. We cannot prove it, but there are so many facts that can only be explained by it, we have strong reason for believing that something of the kind must have happened. When we come to speak of the starry heavens we shall see that there are many masses of glowing gas which are nebulÆ of the same sort, and which form an object-lesson in our own history. We have spoken rather lightly of the nebula rotating and throwing off planets; but we must not |