Relationship of man to nature—The aspect of a country is dependent on geological phenomena—Earthquakes an important geological phenomenon—Relationship of seismology to the sciences and arts—Earth movements other than earthquakes—Seismological literature—(Writings of Perrey, Mallet, Eastern writings, the Philosophical Transactions of the Royal Society, the ‘Gentleman’s Magazine,’ the Bible, Herodotus, Pliny, Hopkins, Von Hoff, Humboldt, Schmidt, Seebach, Lasaulx, Fuchs, Palmieri, Bertelli, Seismological Society of Japan)—Seismological terminology. In bygone superstitious times lightning and thunder were regarded as supernatural visitations. But as these phenomena became better understood, and men learned how to avoid their destructive power, the superstition was gradually dispelled. Thus it is with Earthquakes: the more clearly they are understood, the more confident in the universality of law will man become, and the more will his mental condition be advanced. In his ‘History of Civilisation in England,’ Buckle has laid considerable stress upon the manner in which earthquakes, volcanoes, and other of the more terrible forms in which the workings of nature reveal themselves To a geologist there are perhaps no phenomena in nature more interesting than earthquakes, the study of which is called Seismology. Coming, as shocks often will, from a region of volcanoes, the study of these disturbances may enable us to understand something about the nature and working of a volcano. As an earthquake wave travels along from strata to strata, if we study its reflections and changing velocity in transit, we may often be led to the discovery of certain rocky structures buried deep beneath our view, about which, without the help of such waves, it would be hopeless ever to attain any knowledge. By studying the propagation of earthquake waves the physicist is enabled to confirm his speculations respecting the transmission of disturbances in elastic media. For the physicist earthquakes are gigantic experiments which tell him the elastic moduli of rocks as they exist in nature, and when properly interpreted may lead him to the proper comprehension of many ill-understood phenomena. It is not impossible that seismological investigation may teach us something about the earth’s magnetism, and the connection between earthquakes and the ‘earth currents’ which appear in our telegraph wires. These and numerous other kindred problems fall within the domain of the physicist. It is of interest to the meteorologist to know the connections which probably exist between earthquakes and the fluctuations of the barometer, the changes of the Next we may turn to the more practical aims of seismology and ask ourselves what are the effects of earthquakes upon buildings, and how, in earthquake-shaken countries, the buildings are to be made to withstand them. Here we are face to face with problems which demand the attention of engineers and builders. To attain what we desire, observation, common sense, and subtle reasoning must be brought to bear upon this subject. In the investigation of the principle on which earthquake instruments make their records, in the analysis of the results they give, in problems connected with astronomy, with physics, and with construction, seismology offers to the mathematician new fields for investigation. A study of the effects which earthquakes produce on the lower animals will not fail to interest the student of natural history. A study like seismology, which leads us to a more complete knowledge of earth-heat and its workings, is to be regarded as one of the corner-stones of geology. The science of seismology invites the co-operation of workers and thinkers in almost every department of natural science. We have already referred to the influence exerted by earthquakes over the human mind. How to predict earthquakes, and how to escape from their dangers, are problems which, if they can be solved, are of extreme interest to the world at large. In addition to the sudden and violent movements which we call earthquakes, the seismologist has to investigate the smaller motions which we call earth tremors. From observations which have been made of late years, A further subject of investigation which is before the seismologist is the experimental verification of the existence of what may be called ‘earth-pulsations.’ These are motions which mathematical physicists affirmed the existence of, but which, in consequence of the slowness of their period, have hitherto escaped observation. The oscillations, or slow changes in the relative positions of land and sea, might also be included; but this has already been taken up as a separate branch of geology. These four classes of movements are no doubt interdependent, and seismology in the widest sense might conveniently be employed to include them all. In succeeding chapters we will endeavour to indicate how far the first three of these branches have been prosecuted, and to point out that which remains to be accomplished. It is difficult, however, to form a just estimate of the amount of seismological work which has been done, in consequence of the scattered and uncertain nature of many of the records. Seismology, as a science, originated late, chiefly owing to the facts that centres of civilisation are seldom in the most disturbed regions, and that earthquake-shaken countries are widely separated from each other. As every portion of the habitable globe appears to have been shaken more or less by earthquakes, and as these phenomena are so terrible in their nature, we can readily understand why seismological literature is extensive. In the annals of almost every country which has a written history, references are made to seismic disturbances. An idea of the attention which earthquakes have received may be gathered from the fact that Professor Alexis Perrey, of Dijon, who has published some sixty memoirs In the ‘Philosophical Transactions of the Royal Society,’ which were issued in the eighteenth century, there are about one hundred and eighty separate communications on earthquakes; and in the ‘Gentleman’s Magazine’ for 1755 there are no less than fifty notes and articles on the same subject. The great interest shown in earthquakes about the years 1750–60 in England, was chiefly due to the terrible calamity which overtook Lisbon in 1755, and to the fact that about this time several shocks were experienced in various parts of the British Islands. In 1750, which may Seismic literature has not, however, at all times been a measure of seismic activity: thus, in Japan, the earthquake records for the twelfth and sixteenth centuries scarcely mention any shocks. At first sight it might be imagined that this was owing to an absence of earthquakes; but it is sufficiently accounted for by the fact that at that time the country was torn with civil war, and matters more urgent than the recording of natural phenomena engaged the attention of the inhabitants. Professor Rockwood, who has given so much attention to seismic disturbances in America, tells us that during the recent contest between Chili and Peru a similar intermission is observable. We see, therefore, that an absence of records does not necessarily imply an absence of the phenomena to be recorded. Perhaps the earliest existing records of earthquakes are those which occur in the Bible. The first of these, which we are told occurred in Palestine, was in the reign of Ahab (b.c. 918–897).[4] One of the most terrible earthquakes mentioned in the Bible is that which took place in the days of Uzziah, king of Judah (b.c. 811–759), The writings of Herodotus, Pliny, Livy, &c., &c., show the interest which earthquakes attracted in early ages. These writers chiefly devoted themselves to references and descriptions of disastrous shocks, and to theories respecting the cause of earthquakes. The greater portion of the Japanese notices of earthquakes is simply a series of anecdotes of events which took place at the time of these disasters. We also find references to superstitious beliefs, curious occurrences, and the apparent connection between earthquake disturbances and other natural phenomena. In these respects the literature of the East closely resembles that of the West. The earthquake calendars of the East, however, form a class of books which can hardly be said to find their parallel in Europe;[5] while, on the other hand, the latter possesses types of books and pamphlets which do not appear to have a parallel elsewhere. These are the more or less theological works—‘Moral Reflections on Earthquakes,’ ‘Sermons’ which have been preached on earthquakes, ‘Prayers’ which have been appointed to be read.[6] Speaking generally, it may be said that the writings of the ancients, and those of the Middle Ages, down to the commencement of the nineteenth century, tended to the propagation of superstition and to theories based on speculations with few and imperfect facts for their foundation. Among the efforts which have been made in modern times to raise seismology to a higher level, is that of Professor Perrey, of Dijon, who commenced in 1840 a series of extensive catalogues embracing the earthquakes of the world. These catalogues enabled Perrey, and subsequently Mallet in his reports to the British Association, to discuss the periodicity of earthquakes, with reference to the seasons and to other phenomena, in a more general manner than it had been possible for previous workers to accomplish. The facts thus accumulated also enabled Mallet to discuss earthquakes in general, and the various phenomena which they present were sifted and classified for inspection. Another great impetus which observational seismology received was Mr. Mallet’s report upon the Neapolitan earthquake of 1857, in which new methods of seismic investigation were put forth. These have formed the working tools of many subsequent observers, and by them, as well as by his experiments on artificially produced disturbances, Mallet finally drew the study of earthquakes from the realms of speculation by showing that they, like other natural phenomena, were capable of being understood and investigated. In addition to Perrey and Mallet, the nineteenth century has produced many writers who have taken a considerable share in the advancement of seismology. There are the catalogues of Von Hoff, the observations of Humboldt, the theoretical investigations of Hopkins, the monographs of Schmidt, Seebach, Lasaulx, and others; the books of Fuchs, Credner, Vogt, Volger; the records and observations of Palmieri, Bertelli, Rossi, and other Italian observers. To these, which are only a few out of a long list of names, may be added the publications of the Before concluding this chapter it will be well to define a few of the more ordinary terms which are used in describing earthquake phenomena. It may be observed that the English word earthquake, the German erdbeben, the French tremblement de terre, the Spanish terremoto, the Japanese jishin &c., all mean, when literally translated, earth-shaking, and are popularly understood to mean a sudden and more or less violent disturbance. Seismology (se??? an earthquake, ????? a discourse) in its simplest sense means the study of earthquakes. To be consistent with a Greek basis for seismological terminology, some writers have thrown aside the familiar expression ‘earthquake,’ and substituted the awkward word ‘seism.’ The source from which an earthquake originates is called the ‘origin,’ ‘focal cavity,’ or ‘centrum.’ The point or area on the surface of the ground above the origin is called the ‘epicentrum.’ The line joining the centrum and epicentrum is called the ‘seismic vertical.’ The radial lines along which an earthquake may be propagated from the centrum are called ‘wave paths.’ The angle which a wave path, where it reaches the surface of the earth, makes with that surface is called the ‘angle of emergence’ of the wave. This angle is usually denoted by the letter e. As the result of a simple explosion at a point in a homogeneous medium, we ought, theoretically, to obtain at points on the surface of the medium equidistant The isoseismic area in which the greatest disturbance has taken place is called the ‘meizoseismic area.’ Seebach calls the lines enclosing this area ‘pleistoseists.’ These last-mentioned lines are wholly due to Mallet and Seebach. Many words are used to distinguish different kinds of earthquakes from each other. All of these appear to be very indefinite and to depend upon the observer’s feelings, which, in turn, depend upon his nervous temperament and his situation. In South America small earthquakes, consisting of a series of rapidly recurring vibratory movements not sufficiently powerful to create damage, are spoken of as trembelores. The terremotos of South America are earthquakes of a destructive nature, in which distinct shocks are perceptible. It may be observed that shocks which at one place would be described as terremoto would at another and more distant place probably be described as trembelores. The succussatore are the shocks where there is considerable vertical motion. The terrible shock of Riobamba (February 4, 1797), which is said to have thrown corpses from their graves to a height of 100 feet, was an earthquake of this order. The vorticosi are shocks which have a twisting or rotatory motion. Another method of describing earthquakes would be |