CHAPTER XXIV COPPER, SILVER, AND GOLD

Previous

That degree of analogy and difference which exists between iron, cobalt, and nickel repeats itself in the corresponding triad ruthenium, rhodium, and palladium, and also in the heavy platinum metals, osmium, iridium, and platinum. These nine metals form Group VIII. of the elements in the periodic system, being the intermediate group between the even elements of the large periods and the uneven, among which we know zinc, cadmium, and mercury in Group II. Copper, silver, and gold complete[1] this transition, because their properties place them in proximity to nickel, palladium, and platinum on the one hand, and to zinc, cadmium, and mercury on the other. Just as Zn, Cd, and Hg; Fe, Ru, and Os; Co, Rh, and Ir; Ni, Pd, and Pt, resemble each other in many respects, so also do Cu, Ag, and Au. Thus, for example, the atomic weight of copper Cu = 63, and in all its properties it stands between Ni = 59 and Zn = 65. But as the transition from Group VIII. to Group II., where zinc is situated, cannot be otherwise than through Group I., so in copper there are certain properties of the elements of Group I. Thus it gives a suboxide, Cu2O, and salts, CuX, like the elements of Group I., although at the same time it forms an oxide, CuO, and salts CuX2, like nickel and zinc. In the state of the oxide, CuO, and the salts, CuX2, copper is analogous to zinc, judging from the insolubility of the carbonates, phosphates, and similar salts, and by the isomorphism, and other characters.[2] In the cuprous salts there is undoubtedly a great resemblance to the silver salts—thus, for example, silver chloride, AgCl, is characterised by its insolubility and capacity of combining with ammonia, and in this respect cuprous chloride closely resembles it, for it is also insoluble in water, and combines with ammonia and dissolves in it, &c. Its composition is also RCl, the same as AgCl, NaCl, KCl, &c., and silver in many compounds resembles, and is even isomorphous with, sodium, so that this again justifies their being brought together. Silver chloride, cuprous chloride, and sodium chloride crystallise in the regular system. Besides which, the specific heats of copper and silver require that they should have the atomic weights ascribed to them. To the oxides Cu2O and Ag2O there are corresponding sulphides Ag2S and Cu2S. They both occur in nature in crystals of the rhombic system, and, what is most important, copper glance contains an isomorphous mixture of them both, and retains the form of copper glance with various proportions of copper and silver, and therefore has the composition R2S where R = Cu, Ag.

Notwithstanding the resemblance in the atomic composition of the cuprous compounds, CuX, and silver compounds, AgX, with the compounds of the alkali metals KX, NaX, there is a considerable degree of difference between these two series of elements. This difference is clearly seen in the fact that the alkali metals belong to those elements which combine with extreme facility with oxygen, decompose water, and form the most alkaline bases; whilst silver and copper are oxidised with difficulty, form less energetic oxides, and do not decompose water, even at a rather high temperature. Moreover, they only displace hydrogen from very few acids. The difference between them is also seen in the dissimilarity of the properties of many of the corresponding compounds. Thus cuprous oxide, Cu2O, and silver oxide, Ag2O, are insoluble in water: the cuprous and silver carbonates, chlorides, and sulphates are also sparingly soluble in water. The oxides of silver and copper are also easily reduced to metal. This difference in properties is in intimate relation with that difference in the density of the metals which exists in this case. The alkali metals belong to the lightest, and copper and silver to the heaviest, and therefore the distance between the molecules in these metals is very dissimilar—it is greater for the former than the latter (tables in Chapter XV.). From the point of view of the periodic law, this difference between copper and silver and such elements of Group I. as potassium and rubidium, is clearly seen from the fact that copper and silver stand in the middle of those large periods (for example, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br) which start with the true metals of the alkalis—that is to say, the analogy and difference between potassium and copper are of the same nature as that between chromium and selenium, or vanadium and arsenic.

Copper is one of the few metals which have long been known in a metallic form. The Greeks and Romans imported copper chiefly from the island of Cyprus—whence its Latin name, cuprum. It was known to the ancients before iron, and was used, especially when alloyed with other metals, for arms and domestic utensils. That copper was known to the ancients will be understood from the fact that it occurs, although rarely, in a native state, and is easily extracted from its other natural compounds. Among the latter are the oxygen compounds of copper. When ignited with charcoal, they easily give up their oxygen to it, and yield metallic copper; hydrogen also easily takes up the oxygen from copper oxide when heated. Copper occurs in a native state, sometimes in association with other ores, in many parts of the Urals and in Sweden, and in considerable masses in America, especially in the neighbourhood of the great American lakes; and also in Chili, Japan, and China. The oxygen compounds of copper are also of somewhat common occurrence in certain localities; in this respect certain deposits of the Urals are especially famous. The geological period of the Urals (Permian) is characterised by a considerable distribution of copper ores. Copper is met with in the form of cuprous oxide, or suboxide of copper, Cu2O, and is then known as red copper ore, because it forms red masses which not unfrequently are crystallised in the regular system. It is found much more rarely in the state of cupric oxide, CuO, and is then called black copper ore. The most common of the oxygenised compounds of copper are the basic carbonates corresponding with the oxides. That these compounds are undoubtedly of aqueous origin is apparent, not only from the fact that specimens are frequently found of a gradual transition from the metallic, sulphuretted, and oxidised copper into its various carbonates, but also from the presence of water in their composition, and from the laminar, reniform structure which many of them present. In this respect malachite is particularly well known; it is used as a green paint and also for ornaments, owing to the diversity of the shades of colour presented by the different layers of deposited malachite. The composition of malachite corresponds with the basic carbonate containing one molecule of cupric carbonate to one of hydroxide: CuCO3,CuH2O2. In this form the copper frequently occurs in admixture with various sedimentary rocks, forming large strata, which confirms the aqueous origin of these compounds. There are many such localities in the Perm and other Governments bounding the Urals. Blue carbonate of copper, or azurite, is also often met with in the same localities; it contains the same ingredients as malachite, but in a different proportion, its composition being CuH2O2,2CuCO3. Both these substances may be obtained artificially by the action of the alkali carbonates on solutions of cupric salts at various temperatures. These native carbonates are often used for the extraction of copper, all the more as they very readily give metallic copper, evolving water and carbonic anhydride when ignited, and leaving the easily-reducible cupric oxide. Copper is, however, still more often met with in the form of the sulphides. The sulphides of copper generally occur in chemical combination with the sulphides of iron.[3] These copper-sulphur compounds (copper pyrites CuFeS2, variegated copper ore Cu3FeS3, &c.) generally occur in veins in a rock gangue.

The extraction of copper from its oxide ores does not present any difficulty, because the copper, when ignited with charcoal and melted, is reduced from the impurities which accompany it. This mode of smelting copper ores is carried on in cupola or cylindrical furnaces, fluxes forming a slag being added to the mixture of ore and charcoal. The smelted copper still contains sulphur, iron, and other metallic impurities, from which it is freed by fusion in reverberatory furnaces, with access of air to the surface of the molten metal, as the iron and sulphur are more easily oxidised than the copper. The iron then separates as oxides, which collect in the slag.[4]

Copper is characterised by its red colour, which distinguishes it from all other metals. Pure copper is soft, and may be beaten out by a hammer at the ordinary temperature, and when hot may be rolled into very thin sheets. Extremely thin leaves of copper transmit a green light. The tenacity of copper is also considerable, and next to iron it is one of the most durable metals in this respect. Copper wire of 1 sq. millimetre in section only breaks under a weight of 45 kilograms. The specific gravity of copper is 8·8, unless it contains cavities due to the fact that molten copper absorbs oxygen from the air, which is disengaged on cooling, and therefore gives a porous mass whose density is much less. Rolled copper, and also that which is deposited by the electric current, has a comparatively high density. Copper melts at a bright red heat, about 1050°, although below the temperature at which many kinds of cast iron melt. At a high temperature it is converted into vapour, which communicates a green colour to the flame. Both native copper and that cooled from a molten state crystallise in regular octahedra. Copper is not oxidised in dry air at the ordinary temperature, but when calcined it becomes coated with a layer of oxide, and it does not burn even at the highest temperature. Copper, when calcined in air, forms either the red cuprous oxide or the black cupric oxide, according to the temperature and quantity of air supplied. In air at the ordinary temperature, copper—as everyone knows—becomes coated with a brown layer of oxides or a green coating of basic salts, due to the action of the damp air containing carbonic acid. If this action continue for a prolonged time, the copper is covered with a thick coating of basic carbonate, or the so-called verdigris (the Ærugo nobilis of ancient statues). This is due to the fact that copper, although scarcely capable of oxidising by itself,[5] in the presence of water and acids—even very feeble acids, like carbonic acid—absorbs oxygen from the air and forms salts, which is a very characteristic property of it (and of lead).[6] Copper does not decompose water, and therefore does not disengage hydrogen from it either at the ordinary or at high temperatures. Nor does copper liberate hydrogen from the oxygen acids; these act on it in two ways: they either give up a portion of their oxygen, forming lower grades of oxidation, or else only react in the presence of air. Thus, when nitric acid acts on copper it evolves nitric oxide, the copper being oxidised at the expense of the nitric acid. In the same way copper converts sulphuric acid into the lower grade of oxidation—into sulphurous anhydride, SO2. In these cases the copper is oxidised to copper oxide, which combines with the excess of acid taken, and therefore forms a cupric salt, CuX2. Dilute nitric acid does not act on copper at the ordinary temperature, but when heated it reacts with great ease; dilute sulphuric acid does not act on copper except in presence of air.

Both the oxides of copper, Cu2O and CuO, are unacted on by air, and, as already mentioned, they both occur in nature.[6 bis] However, in the majority of cases copper is obtained in the form of cupric oxide and its salts—and the copper compounds used industrially generally belong to this type. This is due to the fact that the cuprous compounds absorb oxygen from the air and pass into cupric compounds. The cupric compounds may serve as the source for the preparation of cuprous oxide, because many reducing agents are capable of deoxidising the oxide into the suboxide. Organic substances are most generally employed for this purpose, and especially saccharine substances, which are able, in the presence of alkalis, to undergo oxidation at the expense of the oxygen of the cupric oxide, and to give acids which combine with the alkali: 2CuO - O = Cu2O. In this case the deoxidation of the copper may be carried further and metallic copper obtained, if only the reaction be aided by heat. Thus, for example, a fine powder of metallic copper may be obtained by heating an ammoniacal solution of cupric oxide with caustic potash and grape sugar. But if the reducing action of the saccharine substance proceed in the presence of a sufficient quantity of alkali in solution, and at not too high a temperature, cuprous oxide is obtained. To see this reaction clearly, it is not sufficient to take any cupric salt, because the alkali necessary for the reaction might precipitate cupric oxide—it is necessary to add previously some substance which will prevent this precipitation. Among such substances, tartaric acid, C4H6O6, is one of the best. In the presence of a sufficient quantity of tartaric acid, any amount of alkali may be added to a solution of cupric salt without producing a precipitate, because a soluble double salt of cupric oxide and alkali is then formed. If glucose (for instance, honey or molasses) be added to such an alkaline tartaric solution, and the temperature be slightly raised, it first gives a yellow precipitate (this is cuprous hydroxide, CuHO), and then, on boiling, a red precipitate of (anhydrous) cuprous oxide. If such a mixture be left for a long time at the ordinary temperature, it deposits well-formed crystals of anhydrous cuprous oxide belonging to the regular system.[7]

Cupric chloride, CuCl2, when ignited, gives cuprous chloride, CuCl—i.e. the salt corresponding with suboxide of copper—and therefore cuprous chloride is always formed when copper enters into reaction with chlorine at a high temperature. Thus, for example, when copper is calcined with mercuric chloride, it forms cuprous chloride and vapours of mercury. The same substance is obtained on heating metallic copper in hydrochloric acid, hydrogen being disengaged; but this reaction only proceeds with finely-divided copper, as hydrochloric acid acts very feebly on compact masses of copper, and, in the presence of air, gives cupric chloride. The green solution of cupric chloride is decolorised by metallic copper, cuprous chloride being formed; but this reaction is only accomplished with ease when the solution is very concentrated and in the presence of an excess of hydrochloric acid to dissolve the cuprous chloride. The addition of water to the solution precipitates the cuprous chloride, because it is less soluble in dilute than in strong hydrochloric acid. Many reducing agents which are able to take up half the oxygen from cupric oxide are able, in the presence of hydrochloric acid, to form cuprous chloride. Stannous salts, sulphurous anhydride, alkali sulphites, phosphorous and hypophosphorous acids, and many similar reducing agents, act in this manner. The usual method of preparing cuprous chloride consists in passing sulphurous anhydride into a very strong solution of cupric chloride: 2CuCl2 + SO2 + 2H2O = 2CuCl + 2HCl + H2SO4. Cuprous chloride forms colourless cubic crystals which are insoluble in water. It is easily fusible, and even volatile. Under the action of oxidising agents, it passes into the cupric salt, and it absorbs oxygen from moist air, forming cupric oxychloride, Cu2Cl2O. Aqueous ammonia easily dissolves cuprous chloride as well as cuprous oxide; the solution also turns blue on exposure to the air. Thus an ammoniacal solution of cuprous chloride serves as an excellent absorbent for oxygen; but this solution absorbs not only oxygen, but also certain other gases—for example, carbonic oxide and acetylene.[8]

When copper is oxidised with a considerable quantity of oxygen at a high temperature, or at the ordinary temperature in the presence of acids, and also when it decomposes acids, converting them into lower grades of oxidation (for example, when submitted to the action of nitric and sulphuric acids), it forms cupric oxide, CuO, or, in the presence of acids, cupric salts. Copper rust, or that black mass which forms on the surface of copper when it is calcined, consists of cupric oxide. The coating of the oxidised copper is very easily separated from the metallic copper, because it is brittle and very easily peels off, when it is struck or immersed in water. Many copper salts (for instance, the nitrite and carbonate) leave oxide of copper[8 bis] in the form of friable black powder, after being ignited. If the ignition be carried further, Cu2O may be formed from the CuO.[8 tri] Anhydrous cupric oxide is very easily dissolved in acids, forming cupric salts, CuX2. They are analogous to the salts MgX2, ZnX2, NiX2, FeX2, in many respects. On adding potassium or ammonium hydroxide to a solution of a cupric salt, it forms a gelatinous blue precipitate of the hydrated oxide of copper, CuH2O2, insoluble in water. The resultant precipitate is re-dissolved by an excess of ammonia, and gives a very beautiful azure blue solution, of so intense a colour that the presence of small traces of cupric salts may be discovered by this means.[9] An excess of potassium or sodium hydroxide does not dissolve cupric hydroxide. A hot solution gives a black precipitate of the anhydrous oxide instead of the blue precipitate, and the precipitate of the hydroxide of copper becomes granular, and turns black when the solution is heated. This is due to the fact that the blue hydroxide is exceedingly unstable, and when slightly heated it loses the elements of water and gives the black anhydrous cupric oxide: CuH2O2 = CuO + H2O.

Cupric oxide fuses at a strong heat, and on cooling forms a heavy crystalline mass, which is black, opaque, and somewhat tenacious. It is a feebly energetic base, so that not only do the oxides of the metals of the alkalis and alkaline earths displace it from its compounds, but even such oxides as those of lead and silver precipitate it from solutions, which is partially due to these oxides being soluble, although but slightly so, in water. However, cupric oxide, and especially the hydroxide, easily combines with even the least energetic acids, and does not give any compounds with bases; but, on the other hand, it easily forms basic salts,[9 bis] and in this respect outstrips magnesium and recalls the oxides of lead or mercury. Hence the hydroxide of copper dissolves in solutions of neutral cupric salts. The cupric salts are generally blue or green, because cupric hydroxide itself is coloured. But some of the salts in the anhydrous state are colourless.[10]

The commonest normal salt is blue vitrioli.e. the normal cupric sulphate. It generally contains five molecules of water of crystallisation, CuSO4,5H2O. It forms the product of the action of strong sulphuric acid on copper, sulphurous anhydride being evolved. The same salt is obtained in practice by carefully roasting sulphuretted ores of copper, and also by the action of water holding oxygen in solution on them: CuS + O4 = CuSO4. This salt forms a by-product, obtained in gold refineries, when the silver is precipitated from the sulphuric acid solution by means of copper. It is also obtained by pouring dilute sulphuric acid over sheet copper in the presence of air, or by heating cupric oxide or carbonate in sulphuric acid. The crystals of this salt belong to the triclinic system, have a specific gravity of 2·19, are of a beautiful blue colour, and give a solution of the same colour. 100 parts of water at 0° dissolve 15, at 25° 23, and at 100° about 45 parts of cupric sulphate, CuSO4.[10 bis] At 100° this salt loses a portion of its water of crystallisation, which it only parts with entirely at a high temperature (220°) and then gives a white powder of the anhydrous sulphate; and the latter, on further calcination, loses the elements of sulphuric anhydride, leaving cupric oxide, like all the cupric salts. The anhydrous (colourless) cupric sulphate is sometimes used for absorbing water; it turns blue in the process. It offers the advantage that it retains both hydrochloric acid and water, but not carbonic anhydride.[11] Cupric sulphate is used for steeping seed corn; this is said to prevent the growth of certain parasites on the plants. In the arts a considerable quantity of cupric sulphate is also used in the preparation of other copper salts—for instance, of certain pigments[11 bis]—and a particularly large quantity is used in the galvanoplastic process, which consists in the deposition of copper from a solution of cupric sulphate by the action of a galvanic current, when the metallic copper is deposited on the negative pole and takes the shape of the latter. The description of the processes of galvanoplastic art introduced by Jacobi in St. Petersburg forms a part of applied physics, and will not be touched on here, and we will only mention that, although first introduced for small articles, it is now used for such articles as type moulds (clichÉs), for maps, prints, &c., and also for large statues, and for the deposition of iron, zinc, nickel, gold, silver, &c. on other metals and materials. The beginning of the application of the galvanic current to the practical extraction of metals from solutions has also been established, especially since the dynamo-electric machines of Gramme, Siemens, and others have rendered it possible to cheaply convert the mechanical motion of the steam engine into an electric current. It is to be expected that the application of the electric current, which has long since given such important results in chemistry, will, in the near future, play an important part in technical processes, the example being shown by electric lighting.

The alloys of copper with certain metals, and especially with zinc and tin, are easily formed by directly melting the metals together. They are easily cast into moulds, forged, and worked like copper, whilst they are much more durable in the air, and are therefore frequently used in the arts. Even the ancients used exclusively alloys of copper, and not pure copper, but its alloys with tin or different kinds of bronze (Chapter XVIII., Note 35). The alloys of copper with zinc are called brass or ‘yellow metal.’ Brass contains about 32 p.c. of zinc; generally, however, it does not contain more than 65 p.c. of copper. The remainder is composed of lead and tin, which usually occur, although in small quantities, in brass. Yellow metal contains about 40 p.c. of zinc.[12] The addition of zinc to copper changes the colour of the latter to a considerable degree; with a certain amount of zinc the colour of the copper becomes yellow, and with a still larger proportion of zinc an alloy is formed which has a greenish tint. In those alloys of zinc and copper which contain a larger amount of zinc than of copper, the yellow colour disappears and is replaced by a greyish colour. But when the amount of zinc is diminished to about 20 p.c., the alloy is red and hard, and is called ‘tombac.’ A contraction takes place in alloying copper with zinc, so that the volume of the alloy is less than that of either metal individually. The zinc volatilises on prolonged heating at a high temperature and the excess of metallic copper remains behind. When heated in the air, the zinc oxidises before the copper, so that all the zinc alloyed with copper may be removed from the copper by this means. An important property of brass containing about 30 p.c. of zinc is that it is soft and malleable in the cold, but becomes somewhat brittle when heated. We may also mention that ordinary copper coins contain, in order to render them hard, tin, zinc, and iron (Cu = 95 p.c.); that it is now customary to add a small amount of phosphorus to copper and bronze, for the same purpose; and also that copper is added to silver and gold in coining, &c. to render it hard; moreover, in Germany, Switzerland, and Belgium, and other countries, a silver-white alloy (melchior, German silver, &c.), for base coinage and other purposes, is prepared from brass and nickel (from 10 to 20 p.c. of nickel; 20 to 30 p.c. zinc: 50 to 70 p.c. copper), or directly from copper and nickel, or, more rarely, from an alloy containing silver, nickel, and copper.[12 bis]

Copper, in its cuprous compounds, is so analogous to silver, that were there no cupric compounds, or if silver gave stable compounds of the higher oxide, AgO, the resemblance would be as close as that between chlorine and bromine or zinc and cadmium; but silver compounds corresponding to AgO are quite unknown. Although silver peroxide—which was regarded as AgO, but which Berthelot (1880) recognised as the sesquioxide Ag2O3—is known, still it does not form any true salts, and consequently cannot be placed along with cupric oxide. In distinction to copper, silver as a metal does not oxidise under the influence of heat; and its oxides, Ag2O and Ag2O3, easily lose oxygen (see Note 8 tri). Silver does not oxidise in air at the ordinary pressure, and is therefore classed among the so-called noble metals. It has a white colour, which is much purer than that of any other known metal, especially when the metal is chemically pure. In the arts silver is always used alloyed, because chemically-pure silver is so soft that it wears exceedingly easily, whilst when fused with a small amount of copper, it becomes very hard, without losing its colour.[13]

[417]
[418]

Silver occurs in nature, both in a native state and in certain compounds. Native silver, however, is of rather rare occurrence. A far greater quantity of silver occurs in combination with sulphur, and especially in the form of silver sulphide, Ag2S, with lead sulphide or copper sulphide, or the ores of various other metals. The largest amount of silver is extracted from the lead in which it occurs. If this lead be calcined in the presence of air, it oxidises, and the resultant lead oxide, PbO (‘litharge’ or ‘silberglÄtte,’ as it is called), melts into a mobile liquid, which is easily removed. The silver remains in an unoxidised metallic state.[14] This process is called cupellation.

Commercial silver generally contains copper, and, more rarely, other metallic impurities also. Chemically pure silver is obtained either by cupellation or by subjecting ordinary silver to the following treatment. The silver is first dissolved in nitric acid, which converts it and the copper into nitrates, Cu(NO3)2 and AgNO3; hydrochloric acid is then added to the resultant solution (green, owing to the presence of the cupric salt), which is considerably diluted with water in order to retain the lead chloride in solution if the silver contained lead. The copper and many other metals remain in solution, whilst the silver is precipitated as silver chloride. The precipitate is allowed to settle, and the liquid is decanted off; the precipitate is then washed and fused with sodium carbonate. A double decomposition then takes place, sodium chloride and silver carbonate being formed; but the latter decomposes into metallic silver, because the silver oxide is decomposed by heat: Ag2CO3 = Ag2 + O + CO2. The silver chloride may also be mixed with metallic zinc, sulphuric acid, and water, and left for some time, when the zinc removes the chlorine from the silver chloride and precipitates the silver as a powder. This finely-divided silver is called ‘molecular silver.’[15]

Chemically-pure silver has an exceeding pure white colour, and a specific gravity of 10·5. Solid silver is lighter than the molten metal, and therefore a piece of silver floats on the latter. The fusing-point of silver is about 950° C., and at the high temperature attained by the combustion of detonating gas it volatilises.[16] By employing silver reduced from silver chloride by milk sugar and caustic potash, and distilling it, Stas obtained silver purer than that obtained by any other means; in fact, this was perfectly pure silver. The vapour of silver has a very beautiful green colour, which is seen when a silver wire is placed in an oxyhydrogen flame.[17]

It has long been known (WÖhler) that when nitrate of silver, AgNO3, reacts as an oxidising agent upon citrates and tartrates, it is able under certain conditions to give either a salt of suboxide of silver (see Note 19) or a red solution, or to give a precipitate of metallic silver reduced at the expense of the organic substances. In 1889 Carey Lea, in his researches on this class of reactions, showed that soluble silver is here formed, which he called allotropic silver. It may be obtained by taking 200 c.c. of a 10 per cent. solution of AgNO3 and quickly adding a mixture (neutralised with NaHO) of 200 c.c. of a 30 per cent. solution of FeSO4 and 200 c.c. of a 40 per cent. solution of sodium citrate. A lilac precipitate is obtained, which is collected on a filter (the precipitate becomes blue) and washed with a solution of NH4NO3. It then becomes soluble in pure water, forming a red perfectly transparent solution from which the dissolved silver is precipitated on the addition of many soluble foreign bodies. Some of the latter—for instance, NH4NO3, alkaline sulphates, nitrates, and citrates—give a precipitate which re-dissolves in pure water, whilst others—for instance, MgSO4, FeSO4, K2Cr2O7, AgNO3, Ba(NO3)2 and many others—convert the precipitated silver into a new variety, which, although no longer soluble in water, regains its solubility in a solution of borax and is soluble in ammonia. Both the soluble and insoluble silver are rapidly converted into the ordinary grey-metallic variety by sulphuric acid, although nothing is given off in the reaction; the same change takes place on ignition, but in this case CO2 is disengaged; the latter is formed from the organic substances which remain (to the amount of 3 per cent.) in the modified silver (they are not removed by soaking in alcohol or water). If the precipitated silver be slightly washed and laid in a smooth thin layer on paper or glass, it is seen that the soluble variety is red when moist and a fine blue colour when dry, whilst the insoluble variety has a blue reflex. Besides these, under special conditions[18] a golden yellow variety may be obtained, which gives a brilliant golden yellow coating on glass; but it is easily converted into the ordinary grey-metallic state by friction or trituration. There is no doubt[18 bis] that there is the same relation between ordinary silver which is perfectly insoluble in water and the varieties of silver obtained by Carey Lea[18 tri] as there is between quartz and soluble silica or between CuS and As2S2 in their ordinary insoluble forms and in the state of the colloid solution of their hydrosols (see Chapter I., Note 57, and Chapter XVII., Note 25 bis). Here, however, an important step in advance has been made in this respect, that we are dealing with the solution of a simple body, and moreover of a metal—i.e. of a particularly characteristic state of matter. And as boron, gold, and certain other simple bodies have already been obtained in a soluble (colloid) form, and as numerous organic compounds (albuminous substances, gum, cellulose, starch, &c.) and inorganic substances are also known in this form, it might be said that the colloid state (of hydrogels and hydrosols) can be acquired, if not by every substance, at all events by substances of most varied chemical character under particular conditions of formation from solutions. And this being the case, we may hope that a further study of soluble colloid compounds, which apparently present various transitions towards emulsions, may throw a new light upon the complex question of solutions, which forms one of the problems of the present epoch of chemical science. Moreover, we may remark that Spring (1890) clearly proved the colloid state of soluble silver by means of dialysis as it did not pass through the membrane.

As regards the capacity of silver for chemical reactions, it is remarkable for its small capacity for combination with oxygen and for its considerable energy of combination with sulphur, iodine, and certain kindred non-metals. Silver does not oxidise at any temperature, and its oxide, Ag2O, is decomposed by heat. It is also a very important fact that silver is not oxidised by oxygen either in the presence of alkalis, even at exceedingly high temperatures, or in the presence of acids—at least, of dilute acids—which properties render it a very important metal in chemical industry for the fusion of alkalis, and also for many purposes in everyday life; for instance, for making spoons, salt-cellars, &c. Ozone, however, oxidises it. Of all acids nitric acid has the greatest action on silver. The reaction is accompanied by the formation of oxides of nitrogen and silver nitrate, AgNO3, which dissolves in water and does not, therefore, hinder the further action of the acid on the metal. The halogen acids, especially hydriodic acid, act on silver, hydrogen being evolved; but this action soon stops, owing to the halogen compounds of silver being insoluble in water and only very slightly soluble in acids; they therefore preserve the remaining mass of metal from the further action of the acid; in consequence of this the action of the halogen acids is only distinctly seen with finely-divided silver. Sulphuric acid acts on silver in the same manner that it does on copper, only it must be concentrated and at a higher temperature. Sulphurous anhydride, and not hydrogen, is then evolved, but there is no action at the ordinary temperature, even in the presence of air. Among the various salts, sodium chloride (in the presence of moisture, air, and carbonic acid) and potassium cyanide (in the presence of air) act on silver more decidedly than any others, converting it respectively into silver chloride and a double cyanide.

Although silver does not directly combine with oxygen, still three different grades of combination with oxygen may be obtained indirectly from the salts of silver. They are all, however, unstable, and decompose into oxygen and metallic silver when ignited. These three oxides of silver have the following composition: silver suboxide, Ag4O,[19] corresponding with the (little investigated) suboxides of the alkali metals; silver oxide, Ag2O, corresponding with the oxides of the alkali metals and the ordinary salts of silver, AgX; and silver peroxide, AgO,[19 bis] or, judging from Berthelot's researches, Ag2O3. Silver oxide is obtained as a brown precipitate (which when dried does not contain water) by adding potassium hydroxide to a solution of a silver salt—for example, of silver nitrate. The precipitate formed seems, however, to be an hydroxide, AgHO, i.e. AgNO3 + KHO = KNO3 + AgHO, and the formation of the anhydrous oxide, 2AgHO = Ag2O + H2O, may be compared with the formation of the anhydrous cupric oxide by the action of potassium hydroxide on hot cupric solutions. Silver hydroxide decomposes into water and silver oxide, even at low temperatures; at least, the hydroxide no longer exists at 60°, but forms the anhydrous oxide, Ag2O.[19 tri] Silver oxide is almost insoluble in water; but, nevertheless, it is undoubtedly a rather powerful basic oxide, because it displaces the oxides of many metals from their soluble salts, and saturates such acids as nitric acid, forming with them neutral salts, which do not act on litmus paper.[20] Undoubtedly water dissolves a small quantity of silver oxide, which explains the possibility of its action on solutions of salts—for example, on solutions of cupric salts. Water in which silver oxide is shaken up has a distinctly alkaline reaction. The oxide is distinguished by its great instability when heated, so that it loses all its oxygen when slightly heated. Hydrogen reduces it at about 80°.[20 bis] The feebleness of the affinity of silver for oxygen is shown by the fact that silver oxide decomposes under the action of light, so that it must be kept in opaque vessels. The silver salts are colourless and decompose when heated, leaving metallic silver if the elements of the acid are volatile.[20 tri] They have a peculiar metallic taste, and are exceedingly poisonous; the majority of them are acted on by light, especially in the presence of organic substances, which are then oxidised. The alkaline carbonates give a white precipitate of silver carbonate, Ag2CO3, which is insoluble in water, but soluble in ammonia and ammonium carbonate. Aqueous ammonia, added to a solution of a normal silver salt, first acts like potassium hydroxide, but the precipitate dissolves in an excess of the reagent, like the precipitate of cupric hydroxide.[21] Silver oxalate and the halogen compounds of silver are insoluble in water; hydrochloric acid and soluble chlorides give, as already repeatedly observed, a white precipitate of silver chloride in solutions of silver salts. Potassium iodide gives a yellowish precipitate of silver iodide. Zinc separates all the silver in a metallic form from solutions of silver salts. Many other metals and reducing agents—for example, organic substances—also reduce silver from the solutions of its salts.

Silver nitrate, AgNO3, is known by the name of lunar caustic (or lapis infernalis); it is obtained by dissolving metallic silver in nitric acid. If the silver be impure, the resultant solution will contain a mixture of the nitrates of copper and silver. If this mixture be evaporated to dryness and the residue carefully fused at an incipient red heat, all the cupric nitrate is decomposed, whilst the greater part of the silver nitrate remains unchanged. On treating the fused mass with water the latter is dissolved, whilst the cupric oxide remains insoluble. If a certain amount of silver oxide be added to the solution containing the nitrates of silver and copper, it displaces all the cupric oxide. In this case it is of course not necessary to take pure silver oxide, but only to pour off some of the solution and to add potassium hydroxide to one portion, and to mix the resultant precipitate of the hydroxides, Cu(OH)2 and AgOH, with the remaining portion.[22] By these methods all the copper can be easily removed and pure silver nitrate obtained (its solution is colourless, while the presence of Cu renders it blue), which may be ultimately purified by crystallisation. It crystallises in colourless transparent prismatic plates, which are not acted on by air. They are anhydrous. Its sp. gr. is 4·34; it dissolves in half its weight of water at the ordinary temperature.[22 bis] The pure salt is not acted on by light, but it easily acts in an oxidising manner on the majority of organic substances, which it generally blackens. This is due to the fact that the organic substance is oxidised by the silver nitrate, which is reduced to metallic silver; the latter is thus obtained in a finely-divided state, which causes the black stain. This peculiarity is taken advantage of for marking linen. Silver nitrate is for the same reason used for cauterising wounds and various growths on the body. Here again it acts by virtue of its oxidising capacity in destroying the organic matter, which it oxidises, as is seen from the separation of a coating of black metallic powdery silver from the part cauterised.[22 tri] From the description of the preparation of silver nitrate it will have been seen that this salt, which fuses at 218°, does not decompose at an incipient red heat; when cast into sticks it is usually employed for cauterising. On further heating, the fused salt undergoes decomposition, first forming silver nitrite and then metallic silver. With ammonia, silver nitrate forms, on evaporation of the solution, colourless crystals containing AgNO3,2HN3 (Marignac). In general the salts of silver, like cuprous, cupric, zinc, &c. salts, are able to give several compounds with ammonia; for example, silver nitrate in a dry state absorbs three molecules (Rose). The ammonia is generally easily expelled from these compounds by the action of heat.

Nitrate of silver easily forms double salts like AgNO32NaNO3 and AgNO3KNO3. Silver nitrate under the action of water and a halogen gives nitric acid (see Vol. I. p. 280, formation of N2O5), a halogen salt of silver, and a silver salt of an oxygen acid of the halogen. Thus, for example, a solution of chlorine in water, when mixed with a solution of silver nitrate, gives silver chloride and chlorate. It is here evident that the reaction of the silver nitrate is identical with the reaction of the caustic alkalis, as the nitric acid is all set free and the silver oxide only reacts in exactly the same way in which aqueous potash acts on free chlorine. Hence the reaction may be expressed in the following manner: 6AgNO3 + 3Cl2 + 3H2O = 5AgCl + AgClO3 + 6NHO3.

Silver nitrate, like the nitrates of the alkalis, does not contain any water of crystallisation. Moreover the other salts of silver almost always separate out without any water of crystallisation. The silver salts are further characterised by the fact that they give neither basic nor acid salts, owing to which the formation of silver salts generally forms the means of determining the true composition of acids—thus, to any acid HnX there corresponds a salt AgnX—for instance, Ag3PO4 (Chapter XIX., Note 15).

Silver gives insoluble and exceedingly stable compounds with the halogens. They are obtained by double decomposition with great facility whenever a silver salt comes in contact with halogen salts. Solutions of nitrate, sulphate, and all other kindred salts of silver give a precipitate of silver chloride or iodide in solutions of chlorides and iodides and of the halogen acids, because the halogen salts of silver are insoluble both in water[23] and in other acids. Silver chloride, AgCl, is then obtained as a white flocculent precipitate, silver bromide forms a yellowish precipitate, and silver iodide has a very distinct yellow colour. These halogen compounds sometimes occur in nature; they are formed by a dry method—by the action of halogen compounds on silver compounds, especially under the influence of heat. Silver chloride easily fuses at 451° on cooling from a molten state; it forms a somewhat soft horn-like mass which can be cut with a knife and is known as horn silver. It volatilises at a higher temperature. Its ammoniacal solution, on the evaporation of the ammonia, deposits crystalline chloride of silver, in octahedra. Bromide and iodide of silver also appear in forms of the regular system, so that in this respect the halogen salts of silver resemble the halogen salts of the alkali metals.[24]

[430]
[431]

Silver chloride may be decomposed, with the separation of silver oxide, by heating it with a solution of an alkali, and if an organic substance be added to the alkali the chloride can easily be reduced o metallic silver, the silver oxide being reduced in the oxidation of the organic substance. Iron, zinc, and many other metals reduce silver chloride in the presence of water. Cuprous and mercurous chlorides and many organic substances are also able to reduce the silver from chloride of silver. This shows the rather easy decomposability of the halogen compounds of silver. Silver iodide is much more stable in this respect than the chloride. The same is also observed with respect to the action of light upon moist AgCl. White silver chloride soon acquires a violet colour when exposed to the action of light, and especially under the direct action of the sun's rays. After being acted upon by light it is no longer entirely soluble in ammonia, but leaves metallic silver undissolved, from which it might be assumed that the action of light consisted in the decomposition of the silver chloride into chlorine and metallic silver and in fact the silver chloride becomes in time darker and darker. Silver bromide and iodide are much more slowly acted on by light, and, according to certain observations, when pure they are even quite unacted on; at least they do not change in weight,[24 bis] so that if they are acted on by light, the change they undergo must be one of a change in the structure of their parts and not of decomposition, as it is in silver chloride. The silver chloride under the action of light changes in weight, which indicates the formation of a volatile product, and the deposition of metallic silver on dissolving in ammonia shows the loss of chlorine. The change does actually occur under the action of light, but the decomposition does not go as far as into chlorine and silver, but only to the formation of a subchloride of silver, Ag2Cl, which is of a brown colour and is easily decomposed into metallic silver and silver chloride, Ag2Cl = AgCl + Ag. This change of the chemical composition and structure of the halogen salts of silver under the action of light forms the basis of photography, because the halogen compounds of silver, after having been exposed to light, give a precipitate of finely-divided silver, of a black colour, when treated with reducing agents.[25]

The insolubility of the halogen compounds of silver forms the basis of many methods used in practical chemistry. Thus by means of this reaction it is possible to obtain salts of other acids from a halogen salt of a given metal, for instance, RCl2 + 2AgNO3 = R(NO3)2 + 2AgCl. The formation of the halogen compounds of silver is very frequently used in the investigation of organic substances; for example, if any product of metalepsis containing iodine or chlorine be heated with a silver salt or silver oxide, the silver combines with the halogen and gives a halogen salt, whilst the elements previously combined with the silver replace the halogen. For instance, ethylene dibromide, C2H4Br2, is transformed into ethylene diacetate, C2H4(C2H3O2)2, and silver bromide by heating it with silver acetate, 2C2H3O2Ag. The insolubility of the halogen compounds of silver is still more frequently taken advantage of in determining the amount of silver and halogen in a given solution. If it is required, for instance, to determine the quantity of chlorine present in the form of a metallic chloride in a given solution, a solution of silver nitrate is added to it so long as it gives a precipitate. On shaking or stirring the liquid, the silver chloride easily settles in the form of heavy flakes. It is possible in this way to precipitate the whole of the chlorine from a solution, without adding an excess of silver nitrate, since it can be easily seen whether the addition of a fresh quantity of silver nitrate produces a precipitate in the clear liquid. In this manner it is possible to add to a solution containing chlorine, as much silver as is required for its entire precipitation, and to calculate the amount of chlorine previously in solution from the amount of the solution of silver nitrate consumed, if the quantity of silver nitrate in this solution has been previously determined.[25 bis] The atomic proportions and preliminary experiments with a pure salt—for example, with sodium chloride—will give the amount of chlorine from the quantity of silver nitrate. Details of these methods will be found in works on analytical chemistry.[25 tri]

Accurate experiments, and more especially the researches of Stas at Brussels, show the proportion in which silver reacts with metallic chlorides. These researches have led to the determination of the combining weights of silver, sodium, potassium, chlorine, bromine, iodine, and other elements, and are distinguished for their model exactitude, and we will therefore describe them in some detail. As sodium chloride is the chloride most generally used for the precipitation of silver, since it can most easily be obtained in a pure state, we will here cite the quantitative observations made by Stas for showing the co-relation between the quantities of chloride of sodium and silver which react together. In order to obtain perfectly pure sodium chloride, he took pure rock salt, containing only a small quantity of magnesium and calcium compounds and a small amount of potassium salts. This salt was dissolved in water, and the saturated solution evaporated by boiling. The sodium chloride separated out during the boiling, and the mother liquor containing the impurities was poured off. Alcohol of 65 p.c. strength and platinic chloride were added to the resultant salt, in order to precipitate all the potassium and a certain part of the sodium salts. The resultant alcoholic solution, containing the sodium and platinum chlorides, was then mixed with a solution of pure ammonium chloride in order to remove the platinic chloride. After this precipitation, the solution was evaporated in a platinum retort, and then separate portions of this purified sodium chloride were collected as they crystallised. The same salt was prepared from sodium sulphate, tartrate, nitrate, and from the platinochloride, in order to have sodium chloride prepared by different methods and from different sources, and in this manner ten samples of sodium chloride thus prepared were purified and investigated in their relation to silver. After being dried, weighed quantities of all ten samples of sodium chloride were dissolved in water and mixed with a solution in nitric acid of a weighed quantity of perfectly pure silver. A slightly greater quantity of silver was taken than would be required for the decomposition of the sodium chloride, and when, after pouring in all the silver solution, the silver chloride had settled, the amount of silver remaining in excess was determined by means of a solution of sodium chloride of known strength. This solution of sodium chloride was added so long as it formed a precipitate. In this manner Stas determined how many parts of sodium chloride correspond to 100 parts by weight of silver. The result of ten determinations was that for the entire precipitation of 100 parts of silver, from 54·2060 to 54·2093 parts of sodium chloride were required. The difference is so inconsiderable that it has no perceptible influence on the subsequent calculations. The mean of ten experiments was that 100 parts of silver react with 54·2078 parts of sodium chloride. In order to learn from this the relation between the chlorine and silver, it was necessary to determine the quantity of chlorine contained in 54·2078 parts of sodium chloride, or, what is the same thing, the quantity of chlorine which combines with 100 parts of silver. For this purpose Stas made a series of observations on the quantity of silver chloride obtained from 100 parts of silver. Four syntheses were made by him for this purpose. The first synthesis consisted in the formation of silver chloride by the action of chlorine on silver at a red heat. This experiment showed that 100 parts of silver give 132·841, 132·843 and 132·843 of silver chloride. The second method consisted in dissolving a given quantity of silver in nitric acid and precipitating it by means of gaseous hydrochloric acid passed over the surface of the liquid; the resultant mass was evaporated in the dark to drive off the nitric acid and excess of hydrochloric acid, and the remaining silver chloride was fused first in an atmosphere of hydrochloric acid gas and then in air. In this process the silver chloride was not washed, and therefore there could be no loss from solution. Two experiments made by this method showed that 100 parts of silver give 132·849 and 132·846 parts of silver chloride. A third series of determinations was also made by precipitating a solution of silver nitrate with a certain excess of gaseous hydrochloric acid. The amount of silver chloride obtained was altogether 132·848. Lastly, a fourth determination was made by precipitating dissolved silver with a solution of ammonium chloride, when it was found that a considerable amount of silver (0·3175) had passed into solution in the washing; for 100 parts of silver there was obtained altogether 132·8417 of silver chloride. Thus from the mean of seven determinations it appears that 100 parts of silver give 132·8445 parts of silver chloride—that is, that 32·8445 parts of chlorine are able to combine with 100 parts of silver and with that quantity of sodium which is contained in 54·2078 parts of sodium chloride. These observations show that 32·8445 parts of chlorine combine with 100 parts of silver and with 21·3633 parts of sodium. From these figures expressing the relation between the combining weights of chlorine, silver, and sodium, it would be possible to determine their atomic weights—that is, the combining quantity of these elements with respect to one part by weight of hydrogen or 16 parts of oxygen, if there existed a series of similarly accurate determinations for the reactions between hydrogen or oxygen and one of these elements—chlorine, sodium, or silver. If we determine the quantity of silver chloride which is obtained from silver chlorate, AgClO3, we shall know the relation between the combining weights of silver chloride and oxygen, so that, taking the quantity of oxygen as a constant magnitude, we can learn from this reaction the combining weight of silver chloride, and from the preceding numbers the combining weights of chlorine and silver. For this purpose it was first necessary to obtain pure silver chlorate. This Stas did by acting on silver oxide or carbonate, suspended in water, with gaseous chlorine.[26]

The decomposition of the silver chlorate thus obtained was accomplished by the action of a solution of sulphurous anhydride on it. The salt was first fused by carefully heating it at 243°. The solution of sulphurous anhydride used was one saturated at 0°. Sulphurous anhydride in dilute solutions is oxidised at the expense of silver chlorate, even at low temperatures, with great ease if the liquid be continually shaken, sulphuric acid and silver chloride being formed: AgClO3 + 3SO2 + 3H2O = AgCl + 3H2SO4. After decomposition, the resultant liquid was evaporated, and the residue of silver chloride weighed. Thus the process consisted in taking a known weight of silver chlorate, converting it into silver chloride, and determining the weight of the latter. The analysis conducted in this manner gave the following results, which, like the preceding, designate the weight in a vacuum calculated from the weights obtained in air: In the first experiment it appeared that 138·7890 grams of silver chlorate gave 103·9795 parts of silver chloride, and in the second experiment that 259·5287 grains of chlorate gave 194·44515 grams of silver chloride, and after fusion 194·4435 grams. The mean result of both experiments, converted into percentages, shows that 100 parts of silver chlorate contain 74·9205 of silver chloride and 25·0795 parts of oxygen. From this it is possible to calculate the combining weight of silver chloride, because in the decomposition of silver chlorate there are obtained three atoms of oxygen and one molecule of silver chloride: AgClO3 = AgCl + 3O. Taking the weight of an atom of oxygen to be 16, we find from the mean result that the equivalent weight of silver chloride is equal to 143·395. Thus if O = 16, AgCl = 143·395, and as the preceding experiments show that silver chloride contains 32·8445 parts of chlorine per 100 parts of silver, the weight of the atom of silver[26 bis] must be 107·94 and that of chlorine 35·45. The weight of the atom of sodium is determined from the fact that 21·3633 parts of sodium chloride combine with 32·8445 parts of chlorine; consequently Na = 23·05. This conclusion, arrived at by the analysis of silver chlorate, was verified by means of the analysis of potassium chlorate by decomposing it by heat and determining the weight of the potassium chloride formed, and also by effecting the same decomposition by igniting the chlorate in a stream of hydrochloric acid. The combining weight of potassium chloride was thus determined, and another series of determinations confirmed the relation between chlorine, potassium, and silver, in the same manner as the relation between sodium, chlorine, and silver was determined above. Consequently, the combining weights of sodium, chlorine, and potassium could be deduced by combining these data with the analysis of silver chlorate and the synthesis of silver chloride. The agreement between the results showed that the determinations made by the last method were perfectly correct, and did not depend in any considerable degree on the methods which were employed in the preceding determinations, as the combining weights of chlorine and silver obtained were the same as before. There was naturally a difference, but so small a one that it undoubtedly depended on the errors incidental to every process of weighing and experiment. The atomic weight of silver was also determined by Stas by means of the synthesis of silver sulphide and the analysis of silver sulphate. The combining weight obtained by this method was 107·920. The synthesis of silver iodide and the analysis of silver iodate gave the figure 107·928. The synthesis of silver bromide with the analysis of silver bromate gave the figure 107·921. The synthesis of silver chloride and the analysis of silver chlorate gave a mean result of 107·937. Hence there is no doubt that the combining weight of silver is at least as much as 107·9—greater than 107·90 and less than 107·95, and probably equal to the mean = 107·92. Stas determined the combining weights of many other elements in this manner, such as lithium, potassium, sodium, bromine, chlorine, iodine, and also nitrogen, for the determination of the amount of silver nitrate obtained from a given amount of silver gives directly the combining weight of nitrogen. Taking that of oxygen as 16, he obtained the following combining weights for these elements: nitrogen 14·04, silver 107·93, chlorine 35·46, bromine 79·95, iodine 126·85, lithium 7·02, sodium 23·04, potassium 39·15. These figures differ slightly from those which are usually employed in chemical investigations. They must be regarded as the result of the best observations, whilst the figures usually used in practical chemistry are only approximate—are, so to speak, round numbers for the atomic weights which differ so little from the exact figures (for instance, for Ag 108 instead of 107·92, for Na 23 instead of 23·04) that in ordinary determinations and calculations the difference falls within the limits of experimental error inseparable from such determinations.

The exhaustive investigations conducted by Stas on the atomic weights of the above-named elements have great significance in the solution of the problem as to whether the atomic weights of the elements can be expressed in whole numbers if the unit taken be the atomic weight of hydrogen. Prout, at the beginning of this century, stated that this was the case, and held that the atomic weights of the elements are multiples of the atomic weight of hydrogen. The subsequent determinations of Berzelius, Penny, Marchand, Marignac, Dumas, and more especially of Stas, proved this conclusion to be untenable; since a whole series of elements proved to have fractional atomic weights—for example, chlorine, about 35·5. On account of this, Marignac and Dumas stated that the atomic weights of the elements are expressed in relation to hydrogen, either by whole numbers or by numbers with simple fractions of the magnitudes ½ and ¼. But Stas's researches refute this supposition also. Even between the combining weight of hydrogen and oxygen, there is not, so far as is yet known, that simple relation which is required by Prout's hypothesis,[27] i.e., taking O = 16, the atomic weight of hydrogen is equal not to 1 but to a greater number somewhere between 1·002 and 1·008 or mean 1·005. Such a conclusion arrived at by direct experiment cannot but be regarded as having greater weight than Prout's supposition (hypothesis) that the atomic weights of the elements are in multiple proportion to each other, which would give reason for surmising (but not asserting) a complexity of nature in the elements, and their common origin from a single primary material, and for expecting their mutual conversion into each other. All such ideas and hopes must now, thanks more especially to Stas, be placed in a region void of any experimental support whatever, and therefore not subject to the discipline of the positive data of science.

Among the platinum metals ruthenium, rhodium, and palladium, by their atomic weights and properties, approach silver, just as iron and its analogues (cobalt and nickel) approach copper in all respects. Gold stands in exactly the same position in relation to the heavy platinum metals, osmium, iridium, and platinum, as copper and silver do to the two preceding series. The atomic weight of gold is nearly equal to their atomic weights;[28] it is dense like these metals. It also gives various grades of oxidation, which are feeble, both in a basic and an acid sense. Whilst near to osmium, iridium, and platinum, gold at the same time is able, like copper and silver, to form compounds which answer to the type RX—that is, oxides of the composition R2O. Cuprous chloride, CuCl, silver chloride, AgCl, and aurous chloride, AuCl, are substances which are very much alike in their physical and chemical properties.[28 bis] They are insoluble in water, but dissolve in hydrochloric acid and ammonia, in potassium cyanide, sodium thiosulphate, &c. Just as copper forms a link between the iron metals and zinc, and as silver unites the light platinum metals with cadmium, so also gold presents a transition from the heavy platinum metals to mercury. Copper gives saline compounds of the types CuX and CuX2, silver of the type AgX, whilst gold, besides compounds of the type AuX, very easily and most frequently forms those of the type AuCl3. The compounds of this type frequently pass into those of the lower type, just as PtX4 passes into PtX2, and the same is observable in the elements which, in their atomic weights, follow gold. Mercury gives HgX2 and HgX, thallium gives TlX3 and TlX, lead gives PbX4 and PbX2. On the other hand, gold in a qualitative respect differs from silver and copper in the extreme ease with which all its compounds are reduced to metal by many means. This is not only accomplished by many reducing agents, but also by the action of heat. Thus its chlorides and oxides lose their chlorine and oxygen when heated, and, if the temperature be sufficiently high, these elements are entirely expelled and metallic gold alone remains. Its compounds, therefore, act as oxidising agents.[29]

In nature gold occurs in the primary and chiefly in quartzose rocks, and especially in quartz veins, as in the Urals (at Berezoffsk), in Australia, and in California. The native gold is extracted from these rocks by subjecting them to a mechanical treatment consisting of crushing and washing.[29 bis] Nature has already accomplished a similar disintegration of the hard rocky matter containing gold.[30] These disintegrated rocks, washed by rain and other water, have formed gold-bearing deposits, which are known as alluvial gold deposits. Gold-bearing soil is sometimes met with on the surface and sometimes under the upper soil, but more frequently along the banks of dried-up water-courses and running streams. The sand of many rivers contains, however, a very small amount of gold, which it is not profitable to work; for example, that of the Alpine rivers contains 5 parts of gold in 10,000,000 parts of sand. The richest gold deposits are those of Siberia, especially in the southern parts of the Government of Yeniseisk, the South Urals, Mexico, California, South Africa, and Australia, and then the comparatively poorer alluvial deposits of many countries (Hungary, the Alps, and Spain in Europe). The extraction of the gold from alluvial deposits is based on the principle of levigation; the earth is washed, while constantly agitated, by a stream of water, which carries away the lighter portion of the earth, and leaves the coarser particles of the rock and heavier particles of the gold, together with certain substances which accompany it, in the washing apparatus. The extraction of this washed gold only necessitates mechanical appliances,[31] and it is not therefore surprising that gold was known to savages and in the most remote period of history. It sometimes occurs in crystals belonging to the regular system, but in the majority of cases in nuggets or grains of greater or less magnitude. It always contains silver (from very small quantities up to 30 p.c., when it is called ‘electrum’) and certain other metals, among which lead and rhodium are sometimes found.

The separation of the silver from gold is generally carried on with great precision, as the presence of the silver in the gold does not increase its value for exchange, and it can be substituted by other less valuable metals, so that the extraction of the silver, as a precious metal, from its alloy with gold, is a profitable operation. This separation is conducted by different methods. Sometimes the argentiferous gold is melted in crucibles, together with a mixture of common salt and powdered bricks. The greater portion of the silver is thus converted into the chloride, which fuses and is absorbed by the slags, from which it may be extracted by the usual methods. The silver is also extracted from gold by treating it with boiling sulphuric acid, which does not act on the gold but dissolves the silver. But if the alloy does not contain a large proportion of silver it cannot be extracted by this method or at all events the separation will be imperfect, and therefore a fresh amount of silver is added (by fusion) to the gold, in such quantity that the alloy contains twice as much silver as gold. The silver which is added is preferably such as contains gold, which is very frequently the case. The alloy thus formed is poured in a thin stream into water, by which means it is obtained in a granulated form; it is then boiled with strong sulphuric acid, three parts of acid being used to one part of alloy. The sulphuric acid extracts all the silver without acting on the gold. It is best, however, to pour off the first portion of the acid, which has dissolved the silver, and then treat the residue of still imperfectly pure gold with a fresh quantity of sulphuric acid. The gold is thus obtained in the form of powder, which is washed with water until it is quite free from silver. The silver is precipitated from the solution by means of copper, so that cupric sulphate and metallic silver are obtained. This process is carried out in many countries, as in Russia, at the Government mints.

Gold is generally used alloyed with copper; since pure gold, like pure silver, is very soft, and therefore soon worn away. In assaying or determining the amount of pure gold in such an alloy it is usual to add silver to the gold in order to make up an alloy containing three parts of silver to one of gold (this is known as quartation because the alloy contains ¼ of gold), and the resultant alloy is treated with nitric acid. If the silver be not in excess over the gold, it is not all dissolved by the nitric acid, and this is the reason for the quartation. The amount of pure gold (assay) is determined by weighing the gold which remains after this treatment. English gold (= 22 carats) coinage is composed of an alloy containing 91·66 p.c. of gold, but for many articles gold is frequently used containing a larger amount of foreign metals.

Pure gold may be obtained from gold alloys by dissolving in aqua regia, and then adding ferrous sulphate to the solution or heating it with a solution of oxalic acid. These deoxidising agents reduce the gold, but not the other metals. The chlorine combined with the gold then acts like free chlorine. The gold, thus reduced, is precipitated as an exceedingly fine brown powder.[31 bis] It is then washed with water, and fused with nitre or borax. Pure gold reflects a yellow light, and in the form of very thin sheets (gold leaf), into which it can be hammered and rolled,[31 tri] it transmits a bluish-green light. The specific gravity of gold is about 19·5, the sp. gr. of gold coin is about 17·1. It fuses at 1090°—at a higher temperature than silver—and can be drawn into exceedingly fine wires or hammered into thin sheets. With its softness and ductility, gold is distinguished for its tenacity, and a gold wire two millimetres thick breaks only under a load of 68 kilograms. Gold vaporises even at a furnace heat, and imparts a greenish colour to a flame passing over it in a furnace. Gold alloys with copper almost without changing its volume.[32] In its chemical aspect, gold presents, as is already seen from its general characteristics given above, an example of the so-called noble metals—i.e. it is incapable of being oxidised at any temperature, and its oxide is decomposed when calcined. Only chlorine and bromine combine directly with it at the ordinary temperature, but many other metals and non-metals combine with it at a red heat—for example, sulphur, phosphorus, and arsenic. Mercury dissolves it with great ease. It dissolves in potassium cyanide in the presence of air; a mixture of sulphuric acid with nitric acid dissolves it with the aid of heat, although in small quantity. It is also soluble in aqua regia and in selenic acid. Sulphuric, hydrochloric, nitric, and hydrofluoric acids and the caustic alkalis do not act on gold, but a mixture of hydrochloric acid with such oxidising agents as evolve chlorine naturally dissolves it like aqua regia.[32 bis]

As regards the compounds of gold, they belong, as was said above, to the types AuX3 and AuX. Auric chloride or gold trichloride, AuCl3, which is formed when gold is dissolved in aqua regia, belongs to the former and higher of these types. The solution of this substance in water has a yellow colour, and it may be obtained pure by evaporating the solution in aqua regia to dryness, but not to the point of decomposition. If the evaporation proceed to the point of crystallisation, a compound of gold chloride and hydrochloric acid, AuHCl4, is obtained, like the allied compounds of platinum; but it easily parts with the acid and leaves auric chloride, which fuses into a red-brown liquid, and then solidifies to a crystalline mass. If dry chlorine be passed over gold in powder it forms a mixture of aurous and auric chlorides, but the aurous chloride is also decomposed by water into gold and auric chloride. Auric chloride crystallises from its solutions as AuCl3,2H2O, which easily loses water, and the dry chloride loses two-thirds of its chlorine at 185°, forming aurous chloride, whilst above 300° the latter chloride also loses its chlorine and leaves metallic gold. Auric chloride is the usual form in which gold occurs in solutions, and in which its salts are used in the arts and for chemical purposes. It is soluble in water, alcohol, and ether. Light has a reducing action on these solutions, and after a time metallic gold is deposited upon the sides of vessels containing the solution. Hydrogen when nascent, and even in a gaseous form, reduces gold from this solution to a metallic state. The reduction is more conveniently and usually effected by ferrous sulphate, and in general by the action of ferrous salts.[33]

If a solution of potassium hydroxide be added to a solution of auric chloride, a precipitate is first formed, which re-dissolves in an excess of the alkali. On being evaporated under the receiver of an air-pump, this solution yields yellow crystals, which present the same composition as the double salts AuMCl4, with the substitution of the chlorine by oxygen—that is to say, potassium aurate, AuKO2, is formed in crystals containing 3H2O. The solution has a distinctly alkaline reaction. Auric oxide, Au2O3, separates when this alkaline solution is boiled with an excess of sulphuric acid. But it then still retains some alkali; however, it may be obtained in a pure state as a brown powder by dissolving in nitric acid and diluting with water. The brown powder decomposes below 250° into gold and oxygen. It is insoluble in water and in many acids, but it dissolves in alkalis, which shows the acid character of this oxide. An hydroxide, Au(OH)3 may be obtained as a brown powder by adding magnesium oxide to a solution of auric chloride and treating the resultant precipitate of magnesium aurate with nitric acid. This hydroxide loses water at 100°, and gives auric oxide.[34]

The starting-point of the compounds of the type AuX[35] is gold monochloride or aurous chloride, AuCl, which is formed, as mentioned above, by heating auric chloride at 185°. Aurous chloride forms a yellowish-white powder; this, when heated with water, is decomposed into metallic gold and auric chloride, which passes into solution: 3AuCl = AuCl3 + 2Au. This decomposition is accelerated by the action of light. Hence it is obvious that the compounds corresponding with aurous oxide are comparatively unstable. But this only refers to the simple compounds AuX; some of the complex compounds, on the contrary, form the most stable compounds of gold. Such, for example, is the cyanide of gold and potassium, AuK(CN)2. It is formed, for instance, when finely-divided gold dissolves in the presence of air in a solution of potassium cyanide: 4KCN + 2Au + H2O + O = 2KAu(CN)2 + 2KHO (this reaction also proceeds with solid pieces of gold, although very slowly). The same compound is formed in solution when many compounds of gold are mixed with potassium cyanide, because if a higher compound of gold be taken, it is reduced by the potassium cyanide into aurous oxide, which dissolves in potassium cyanide and forms KAu(CN)2. This substance is soluble in water, and gives a colourless solution, which can be kept for a long time, and is employed in electro-gilding—that is, for coating other metallic objects with a layer of gold, which is deposited if the object be connected with the negative pole of a battery and the positive pole consist of a gold plate. When an electric current is passed between them, the gold from the latter will dissolve, whilst a coating of gold from the solution will be deposited on the object.

Footnotes:

[1] The perfectly unique position held by copper, silver, and gold in the periodic system of the elements, and the degree of affinity which is found between them, is all the more remarkable, as nature and practice have long isolated these metals from all others by having employed them—for example, for coinage—and determined their relative importance and value in conformity with the order (silver between copper and gold) of their atomic weights, &c.

[2] Cupric sulphate contains 5 molecules of water, CuSO4,5H2O, and the isomorphous mixtures with ZnSO4,7H2O contain either 5 or 7 equivalents, according to whether copper or zinc predominates (Vol. II. p. 6). If there be a large proportion of copper, and if the mixture contain 5H2O, the form of the isomorphous mixture (triclinic) will be isomorphous with cupric sulphate, CuSO4,5H2O, but if a large amount of zinc (or magnesium, iron, nickel, or cobalt) be present the form (rhombic or monoclinic) will be nearly the same as that of zinc sulphate, ZnSO4,7H2O. Supersaturated solutions of each of these salts crystallise in that form and with that amount of water which is contained in a crystal of one or other of the salts brought in contact with the solution (Chapter XIV., Note 27).

[3] Iron pyrites, FeS2, very often contain a small quantity of copper sulphide (see Chapter XXII., Note 2 bis), and on burning the iron pyrites for sulphurous anhydride the copper oxide remains in the residue, from which the copper is often extracted with profit. For this purpose the whole of the sulphur is not burnt off from the iron pyrites, but a portion is left behind in the ore, which is then slowly ignited (roasted) with access of air. Cupric sulphate is then formed, and is extracted by water; or what is better and more frequently done, the residue from the roasting of the pyrites is roasted with common salt, and the solution of cupric chloride obtained by lixiviating is precipitated with iron. A far greater amount of copper is obtained from other sulphuretted ores. Among these copper glance, Cu2S, is more rarely met with. It has a metallic lustre, is grey, generally crystalline, and is obtained in admixture with organic matter; so that there is no doubt that its origin is due to the reducing action of the latter on solutions of cupric sulphate. Variegated copper ore, which crystallises in octahedra, not infrequently forms an admixture in copper glance; it has a metallic lustre, and is reddish-brown; it has a superficial play of colours, due to oxidation proceeding on its surface. Its composition is Cu3FeS3. But the most common and widely-distributed copper ore is copper pyrites, which crystallises in regular octahedra; it has a metallic lustre, a sp. gr. of 4·0, and yellow colour. Its composition is CuFeS2. It must be remarked that the sulphurous ores of copper are oxidised in the presence of water containing oxygen in solution, and form cupric sulphate, blue vitriol, which is easily soluble in water. If this water contains calcium carbonate, gypsum and cupric carbonate are formed by double decomposition: CuSO4 + CaCO3 = CuCO3 + CaSO4. Hence copper sulphide in the form of different ores must be considered as the primary product, and the many other copper ores as secondary products, formed by water. This is confirmed by the fact that at the present time the water extracted from many copper mines contains cupric sulphate in solution. From this liquid it is easy to extract cupric oxide by the action of organic matter and various impurities of water. Hence metallic copper is sometimes found in natural products of the modification of copper sulphide and is probably deposited by the action of organic matter present in the water.

[4] Copper ores rich in oxygen are very rare; the sulphur ores are of more common occurrence, but the extraction of the copper from them is much more difficult. The problem here not only consists in the removal of the sulphur, but also in the removal of the iron combined with the sulphur and copper. This is attained by a whole series of operations, after which there still sometimes remains the extraction of the metallic silver which generally accompanies the copper, although in but small quantity. These processes commence with the roasting—i.e. calcination—of the ore with access of air, by which means the sulphur is converted into sulphurous anhydride. It should here be remarked that iron sulphide is more easily oxidised than copper sulphide, and therefore the greater part of the iron in the residue from roasting is no longer in the form of sulphide but of oxide of iron. The roasted ore is mixed with charcoal, and siliceous fluxes, and smelted in a cupola furnace. The iron then passes into the slag, because its oxide gives an easily-fusible mass with the silica, whilst the copper, in the form of sulphide, fuses and collects under the slag. The greater part of the iron is removed from the mass by this smelting. The resultant coarse metal is again roasted in order to remove the greater part of the sulphur from the copper sulphide, and to convert the metal into oxide, after which the mass is again smelted. These processes are repeated several times, according to the richness of the ore. During these smeltings a portion of the copper is already obtained in a metallic form, because copper sulphide gives metallic copper with the oxide (CuS + 2CuO = 3Cu + SO2). We will not here describe the furnaces used or the details of this process, but the above remarks include the explanation of those chemical processes which are accomplished in the various technical operations which are made use of in the process (for details see works on metallurgy).

Besides the smelting of copper there also exist methods for its extraction from solutions in the wet way, as it is called. Recourse is generally had to these methods for poor copper ores. The copper is brought into solution, from which it is separated by means of metallic iron or by other methods (by the action of an electric current). The sulphides are roasted in such a manner that the greater part of the copper is oxidised into cupric sulphate, whilst at the same time the corresponding iron salts are as far as possible decomposed. This process is based on the fact that the copper sulphides absorb oxygen when they are calcined in the presence of air, forming cupric sulphate. The roasted ore is treated with water, to which acid is sometimes added, and after lixiviation the resultant solution containing copper is treated either with metallic iron or with milk of lime, which precipitates cupric hydroxide from the solution. Copper oxide ores poor in metal may be treated with dilute acids in order to obtain the copper oxides in solution, from which the copper is then easily precipitated either by iron or as hydroxide by lime. According to Hunt and Douglas's method, the copper in the ore is converted by calcination into the cupric oxide, which is brought into solution by the action of a mixture of solutions of ferrous sulphate and sodium chloride; the oxide converts the ferrous chloride into ferric oxide, forming copper chlorides, according to the equation 3CuO + 2FeCl2 = CuCl2 + 2CuCl + Fe2O3. The cupric chloride is soluble in water, whilst the cuprous chloride is dissolved in the solution of sodium chloride, and therefore all the copper passes into solution, from which it is precipitated by iron.

The same American metallurgists give the following wet method for extracting the Ag and Au occurring in many copper ores, especially in sulphurous ores: (1) The Cu2S is first converted into oxide by roasting in a calciner; (2) the CuO is extracted by the dilute sulphuric acid obtained in the fourth process, the Cu then passes into solution, while the Ag, Au and oxides of iron remain behind in the residue (from which the noble metals may be extracted); (3) a portion of the copper in solution is converted into CuCl2 (and CaSO4 precipitated) by means of the CaCl2 obtained in the fifth process; (4) the mixture of solutions of CuSO4 and CuCl2 is converted into the insoluble CuCl (salt of the suboxide) by the action of the SO2 obtained by roasting the ore (in the first operation), sulphuric acid is then formed in the solution, according to the equation: CuSO4 + CuCl2 + SO2 + 2H2O = 2H2SO4 + 2CuCl; (5) the precipitated CuCl is treated with lime and water, and gives CuCl2 in solution and CuO in the residue; and lastly (6) the Cu2O is reduced to metallic Cu by carbon in a furnace. According to Crooke's method the impure copper regulus obtained by roasting and smelting the ore is broken up and immersed repeatedly in molten lead, which extracts the Ag and Au occurring in the regulus. The regulus is then heated in a reverberatory furnace to run off the lead, and is then smelted for Cu.

The copper brought into the market often contains small quantities of various impurities. Among these there are generally present iron, lead, silver, arsenic, and sometimes small quantities of oxides of copper. As copper, when mixed with a small amount of foreign substances, loses its tenacity to a certain degree, the manufacture of very thin sheet copper requires the use of Chili copper, which is distinguished for its great softness, and therefore when it is desired to have pure copper, it is best to take thin sheet copper, like that which is used in the manufacture of cartridges. But the purest copper is electrolytic copper—that is, that which is deposited from a solution by the action of an electric current.

If the copper contains silver, as is often the case, it is used in gold refineries for the precipitation of silver from its solutions in sulphuric acid. Iron and zinc reduce copper salts, but copper reduces mercury and silver salts. The precipitate contains not only the silver which was previously in solution, but also all that which was in the copper. The silver solutions in sulphuric acid are obtained in the separation of silver from gold by treating their alloys with sulphuric acid, which only dissolves the silver.

[5] SchÜtzenberger showed that when the basic carbonate of copper is decomposed by an electric current it gives, besides the ordinary copper, an allotropic form which grows on the negative platinum electrode, if its surface be smaller than that of the positive copper electrode, in the form of brittle crystalline growths of sp. gr. 8·1. It differs from ordinary copper by giving not nitric oxide but nitrous oxide when treated with nitric acid, and in being very easily oxidised in air, and coated with red shades of colour. It is possible that this is copper hydride, or copper which has occluded hydrogen. Spring (1892) observed that copper reduced from the oxide by hydrogen at the lowest possible temperature was pulverulent, while that reduced from CuCl2 at a somewhat high temperature appeared in bright crystals. The same difference occurs with many other metals, and is probably partly due to the volatility of the metallic chlorides.

[6] This is taken advantage of in practice; for instance, by pouring dilute acids over copper turnings on revolving tables in the preparation of copper salts, such as verdigris, or the basic acetate 2C4H6CuO4,CuH2O2,5H2O, which is so much used as an oil paint (i.e. with boiled oil). The capacity of copper for absorbing oxygen in the presence of acids is so great that it is possible by this means (by taking, for example, thin copper shavings moistened with sulphuric acid) to take up all the oxygen from a given volume of air, and this is even employed for the analysis of air.

The combination of copper with oxygen is not only aided by acids but also by alkalis, although cupric oxide does not appear to have an acid character. Alkalis do not act on copper except in the presence of air, when they produce cupric oxide, which does not appear to combine with such alkalis as caustic potash or soda. But the action of ammonia is particularly distinct (Chapter V., Note 2). In the action of a solution of ammonia not only is oxygen absorbed by the copper, but it also acts on the ammonia, and a definite quantity of ammonia is always acted on simultaneously with the passage of the copper into solution. The ammonia is then converted into nitrous acid, according to the reaction: NH3 + O3 = NHO2 + H2O, and the nitrous acid thus formed passes into the state of ammonium nitrite, NH4NO2. In this manner three equivalents of oxygen are expended on the oxidation of the ammonia, and six equivalents of oxygen pass over to the copper, forming six atoms of cupric oxide. The latter does not remain in the state of oxide, but combines with the ammonia.

A strong solution of common salt does not act on copper, but a dilute solution of the salt corrodes copper, converting it into oxychloride—that is, in the presence of air. This action of salt water is evident in those cases where the bottoms of ships are coated with sheet copper. From what has been said above it will be evident that copper vessels should not be employed in the preparation of food, because this contains salts and acids which act on copper in the presence of air, and give copper salts, which are poisonous, and therefore the food prepared in untinned copper vessels may be poisonous. Hence tinned vessels are employed for this purpose—that is, copper vessels coated with a thin layer of tin, on which acid and saline solutions do not act.

[6 bis] Copper, besides the cuprous oxide, Cu2O, and cupric oxide, CuO, gives two known higher forms of oxidation, but they have scarcely been investigated, and even their composition is not well known. Copper dioxide (CuO2, or CuO2,H2O, perhaps CuOH2O2) is obtained by the action of hydrogen peroxide on cupric hydroxide, when the green colour of the latter is changed to yellow. It is very unstable, and is decomposed even by boiling water, with the evolution of oxygen, whilst the action of acids gives cupric salts, oxygen being also disengaged. A still higher copper peroxide is formed by heating a mixture of caustic potash, nitre, and metallic copper to a red heat, and by dissolving cupric hydroxide in solutions of the hypochlorites of the alkali metals. A slight heating of the soluble salt formed is enough for it to be decomposed into oxygen and copper dioxide, which is precipitated. Judging from FrÉmy's researches, the composition of the copper-potassic compound should be K2CuO4. Perhaps this is a compound of the peroxides of potassium, K2O2, and of copper, CuO2.

[7] Colourless solutions of cuprous salts may also be obtained by the action of sulphurous or phosphorous acid and similar lower grades of oxidation on the blue solutions of the cupric salts. This is very clearly and easily effected by means of sodium thiosulphate, Na2S2O3, which is oxidised in the process. Cuprous oxide can not only be obtained by the deoxidation of cupric oxide, but also directly from metallic copper itself, because the latter, in oxidising at a red heat in air, first gives cuprous oxide. It is prepared in this manner on a large scale by heating sheet copper rolled into spirals in reverberatory furnaces. Care must be taken that the air is not in great excess, and that the coating of red cuprous oxide formed does not begin to pass into the black cupric oxide. If the oxidised spiral sheet is then unbent, the brittle cuprous oxide falls away from the soft metal. The suboxide obtained in this manner fuses with ease. It is necessary to prevent the access of air during the fusion, and if the mass contains cupric oxide it must be mixed with charcoal, which reduces the latter. Cuprous chloride, CuCl, corresponding with cuprous oxide (as sodium chloride corresponds with sodium oxide), when calcined with sodium carbonate, gives sodium chloride and cuprous oxide, carbonic anhydride being evolved, because it does not combine with the cuprous oxide under these conditions. The reaction can be expressed by the following equation: 2CuCl + Na2CO3 = Cu2O + 2NaCl + CO2. The cupric oxide itself, when calcined with finely-divided copper, this copper powder may be obtained by many methods—for instance, by immersing zinc in a solution of a copper salt, or by igniting cupric oxide in hydrogen), gives the fusible cuprous oxide: Cu + CuO = Cu2O. Both the native and artificial cuprous oxide have a sp. gr. of 5·6. It is insoluble in water, and is not acted on by (dry) air. When heated with acids the suboxide forms a solution of a cupric salt and metallic copper—for example, Cu2O + H2SO4 = Cu + CuSO4 + H2O. However, strong hydrochloric acid does not separate metallic copper on dissolving cuprous oxide, which is due to the fact that the cuprous chloride formed is soluble in strong hydrochloric acid. Cuprous oxide also dissolves in a solution of ammonia, and in the absence of air gives a colourless solution, which turns blue in the air, absorbing oxygen, owing to the conversion of the cuprous oxide into cupric oxide. The blue solution thus formed may be again reconverted into a colourless cuprous solution by immersing a copper strip in it, because the metallic copper then deoxidises the cupric oxide in the solution into cuprous oxide. Cuprous oxide is characterised by the fact that it gives red glasses when fused with glass or with salts forming vitreous alloys. Glass tinted with cuprous oxide is used for ornaments. The access of air must be avoided during its preparation, because the colour then becomes green, owing to the formation of cupric oxide, which colours glass blue. This may even be taken advantage of in testing for copper under the blow-pipe by heating the copper compound with borax in the flame of a blow-pipe; a red glass is obtained in the reducing flame, and a blue glass in the oxidising flame, owing to the conversion of the cuprous into cupric oxide.

Étard (1882), by passing sulphurous anhydride into a solution of cupric acetate, obtained a white precipitate of cuprous sulphite, Cu2SO3,H2O, whilst he obtained the same salt, of a red colour, from the double salt of sodium and copper; but there are not any convincing proofs of isomerism in this case.

[8] The solubility of cuprous chloride in ammonia is due to the formation of compounds between the ammonia and the chloride. In a warm solution the compound NH3,2CuCl is formed, and at the ordinary temperature CuCl,NH3. This salt is soluble in hydrochloric acid, and then forms a corresponding double salt of cuprous chloride and ammonium chloride. By the action of a certain excess of ammonia on a hydrochloric acid solution of cuprous chloride, very well formed crystals, having the composition CuCl,NH3,H2O, are obtained. Cuprous chloride is not only soluble in ammonia and hydrochloric acid, but it also dissolves in solutions of certain other salts—for example, in sodium chloride, potassium chloride, sodium thiosulphate, and certain others. All the solutions of cuprous chloride act in many cases as very powerful deoxidising substances; for example, it is easy, by means of these solutions, to precipitate gold from its solutions in a metallic form, according to the equation AuCl3 + 3CuCl = Au + 3CuCl2.

Among the other compounds corresponding with cuprous oxide, cuprous iodide, CuI, is worthy of remark. It is a colourless substance which is insoluble in water and sparingly soluble in ammonia (like silver iodide), but capable of absorbing it, and in this respect it resembles cuprous chloride. It is remarkable from the fact that it is exceedingly easily formed from the corresponding cupric compound CuI2. A solution of cupric iodide easily decomposes into iodine and cuprous iodide, even at the ordinary temperature, whilst cupric chloride only suffers a similar change on ignition. If a solution of a cupric salt be mixed with a solution of potassium iodide the cupric iodide formed immediately decomposes into free iodine and cuprous iodide, which separates out as a precipitate. In this case the cupric salt acts in an oxidising manner, like, for example, nitrous acid, ozone, and other substances which liberate iodine from iodides, but with this difference, that it only liberates half, whilst they set free the whole of the iodine from potassium iodide: 2KI + CuCl2 = 2KCl + CuI + I.

It must also be remarked that cuprous oxide, when treated with hydrofluoric acid, gives an insoluble cuprous fluoride, CuF. Cuprous cyanide is also insoluble in water, and is obtained by the addition of hydrocyanic acid to a solution of cupric chloride saturated with sulphurous anhydride. This cuprous cyanide, like silver cyanide, gives a double soluble salt with potassium cyanide. The double cyanide of copper and potassium is tolerably stable in the air, and enters into double decompositions with various other salts, like those double cyanides of iron with which we are already acquainted.

Copper hydride, CuH, also belongs to the number of the cuprous compounds. It was obtained by WÜrtz by mixing a hot (70°) solution of cupric sulphate with a solution of hypophosphorous acid, H3PO2. The addition of the reducing hypophosphorous acid must be stopped when a brown precipitate makes its appearance, and when gas begins to be evolved. The brown precipitate is the hydrated cuprous hydride. When gently heated it disengages hydrogen; it gives cuprous oxide when exposed to the air, burns in a stream of chlorine, and liberates hydrogen with hydrochloric acid: CuH + HCl = CuCl + H2. Zinc, silver, mercury, lead, and many other heavy metals do not form such a compound with hydrogen, neither under these circumstances nor under the action of hydrogen at the moment of the decomposition of salts by a galvanic current. The greatest resemblance is seen between cuprous hydride and the hydrogen compounds of potassium, sodium, Pd, Ca, and Ba.

[8 bis] The oxide of copper obtained by igniting the nitrate is frequently used for organic analyses. It is hygroscopic and retains nitrogen (1·5 c.c. per gram) when the nitrate is heated in vacuo (Richards and Rogers, 1893).

[8 tri] Oxide of copper is also capable of dissociating when heated. Debray and Joannis showed that it then disengages oxygen, whose maximum tension is constant for a given temperature, providing that fusion does not take place (the CuO then dissolves in the molten Cu2O); that this loss of oxygen is followed by the formation of suboxide, and that on cooling, the oxygen is again absorbed, forming CuO.

[9] Cupric oxide and many of its salts are able to give definite, although unstable, compounds with ammonia. This faculty already shows itself in the fact that cupric oxide, as well as the salts of copper, dissolves in aqueous ammonia, and also in the fact that salts of copper absorb ammonia gas. If ammonia be added to a solution of any cupric salt, it first forms a precipitate of cupric hydroxide, which then dissolves in an excess of ammonia. The solution thus formed, when evaporated or on the addition of alcohol, frequently deposits crystals of salts containing both the elements of the salt of copper taken and of ammonia. Several such compounds are generally formed. Thus cupric chloride, CuCl2, according to Deherain, forms four compounds with ammonia—namely, with one, two, four, and six molecules of ammonia. Thus, for example, if ammonia gas be passed into a boiling saturated solution of cupric chloride, on cooling, small octahedral crystals of a blue colour separate out, containing CuCl2,2NH3,H2O. At 150° this substance loses half the ammonia and all the water contained in it, leaving the compound CuCl2,NH3. Nitrate of copper forms the compound Cu(NO3)2,2NH3· This compound remains unchanged on evaporation. Dry cupric sulphate absorbs ammonia gas, and gives a compound containing five molecules of ammonia to one of sulphate (Vol. I., p. 257, and Chapter XXII., Note 35). If this compound is dissolved in aqueous ammonia, on evaporation it deposits a crystalline substance containing CuSO4,4NH3,H2O. At 150° this substance loses the molecule of water and one-fourth of its ammonia. On ignition all these compounds part with the remaining ammonia in the form of an ammoniacal salt, so that the residue consists of cupric oxide. Both the hydrated and anhydrous cupric oxide are soluble in aqueous ammonia.

The solution obtained by the action of aqueous ammonia and air on copper turnings (Note 6) is remarkable for its faculty of dissolving cellulose, which is insoluble in water, dilute acids, and alkalis. Paper soaked in such a solution acquires the property of not rotting, of being difficultly combustible, and waterproof, &c. It has therefore been applied, especially in England, to many practical purposes—for example, to the construction of temporary buildings, for covering roofs, &c. The composition of the substance held in solution is Cu(HO)2,4NH3.

If dry ammonia gas be passed over cupric oxide heated to 265°, a portion of the oxide of copper remains unaltered, whilst the other portion gives copper nitride, the oxygen of the copper oxide combining with the hydrogen and forming water. The oxide of copper which remains unchanged is easily removed by washing the resultant product with aqueous ammonia. Copper nitride is very stable, and is insoluble; it has the composition Cu3N (i.e. the copper is monatomic here as in Cu2O), and is an amorphous green powder, which is decomposed when strongly ignited, and gives cuprous chloride and ammonium chloride when treated with hydrochloric acid. Like the other nitrides, copper nitride, Cu3N, has scarcely been investigated. Granger (1892), by heating copper in the vapour of phosphorus, obtained hexagonal prisms of Cu5P, which passed into Cu6P (previously obtained by Abel) when heated in nitrogen. Arsenic is easily absorbed by copper, and its presence (like P), even in small quantities, has a great influence upon the properties of copper—for instance, pure copper wire 1 sq. mm. in section breaks under a load of 35 kilos, while the presence of O·22 p.c. of arsenic raises the breaking load to 42 kilos.

[9 bis] As a comparatively feeble base, oxide of copper easily forms both basic and double salts. As an instance we may mention the double salts composed of the dichloride CuCl2,2H2O and potassium chloride. The double salt CuK2Cl4,2H2O crystallises from solutions in blue plates, but when heated alone or with substances taking up water easily gives brown needles CuKCl3 and at the same time KCl, and this reaction is reversible at 92° as Meyerhoffer (1889) showed (i.e. above 92° the simpler double salt is formed and below 92° the more complex salt). With an excess of the copper salt, KCl gives another double salt, Cu2KCl5,4H2O, the transition temperature of which is 55°. The instances of equilibria which are encountered in such complex relations (see Chapter XIV., Note 25, astrakhanite, and Chapter XXII., Note 23) are embraced by the law of phases given by Gibbs (Transactions of the Connecticut Academy of Sciences, 1875–1878, in J. Willard Gibbs' memoir ‘On the equilibrium of heterogeneous substances:’ and in a clearer and more accessible form in H. W. Bakhuis Roozeboom's papers, Rec. trav. chim., Vol. VI., and in W. Meyerhoffer's memoir Die Phasenregel und ihre Anwendungen, 1893, to which sources we refer those desiring fuller information respecting this law). Gibbs calls ‘bodies’ substances (simple or compound) capable of forming homogeneous complexes (for instance, solutions or intercombinations) of a varied composition; a phase—a mechanically separable portion of such bodies or of their homogeneous complexes (for instance, a vapour, liquid or precipitated solid), perfect equilibrium—such a state of bodies and of their complexes as is characterised by a constant pressure at a constant temperature even under a change in the amount of one of the component parts (for instance, of a salt in a saturated solution), while an imperfect equilibrium is such a one for which such a change corresponds with a change of pressure (for instance, an unsaturated solution). The law of phases consists in the fact that: n bodies only give a perfect equilibrium when n + 1 phases participate in that equilibrium—for example, in the equilibrium of a salt in its saturated solution in water there are two bodies (the salt and water) and three phases, namely, the salt, solution, and vapour, which can be mechanically separated from each other, and to this equilibrium there corresponds a definite tension. At the same time, n bodies may occur in n + 2 phases, but only at one definite temperature and one pressure; a change of one of these may bring about another state (perfect or not—equilibrium stable or unstable). Thus water when liquid at the ordinary temperature offers two phases (liquid and vapour) and is in perfect equilibrium (as also is ice below 0°), but water, ice, and vapour (three phases and only one body) can only be in equilibrium at 0°, and at the ordinary pressure; with a change of t there will remain either only ice and vapour or only liquid water and vapour; whilst with a rise of pressure not only will the vapour pass into the liquid (there again only remain two phases) but also the temperature of the formation of ice will fall (by about 7° per 1000 atmospheres). The same laws of phases are applicable to the consideration of the formation of simple or double salts from saturated solutions and to a number of other purely chemical relations. Thus, for example, in the above-mentioned instance, when the bodies are KCl, CuCl2, and H2O, perfect equilibrium (which here has reference to the solubility) consisting of four phases, corresponds to the following seven cases, considering only the phases (above 0°) A = CuCl2,2KCl,2H2O; B = CuCl2KCl; C = CuCl2,2H2O,KCl, solution and vapour: (1) A + B + solution + vapour; (2) A + C + solution + vapour; (3) A + KCl + solution + vapour; (4) A + B + C + vapour (it follows that B + KCl + solution gives A); (5) A + C + KCl + vapour; (6) B + C + solution + vapour; and (7) B + KCl + solution + vapour. Thus above 92° A gives B + KCl. The law of phases by bringing complex instances of chemical reaction under simple physical schemes, facilitates their study in detail and gives the means of seeking the simplest chemical relations dealing with solutions, dissociation, double decompositions and similar cases, and therefore deserves consideration, but a detailed exposition of this subject must be looked for in works on physical chemistry.

[10] The normal cupric nitrate, CuN2O6,3H2O, is obtained as a deliquescent salt of a blue colour (soluble in water and in alcohol) by dissolving copper or cupric oxide in nitric acid. It is so easily decomposed by the action of heat that it is impossible to drive off the water of crystallisation from it before it begins to decompose. During the ignition of the normal salt the cupric oxide formed enters into combination with the remaining undecomposed normal salt, and gives a basic salt, CuN2O6,2CuH2O2. The same basic salt is obtained if a certain quantity of alkali or cupric hydroxide or carbonate be added to the solution of the normal salt, which is even decomposed when boiled with metallic copper, and forms the basic salt as a green powder, which easily decomposes under the action of heat and leaves a residue of cupric oxide. The basic salt, having the composition CuN2O6,3CuH2O2, is nearly insoluble in water.

The normal carbonate of copper, CuCO3, occurs in nature, although extremely rarely. If solutions of cupric salts be mixed with solutions of alkali carbonates, then, as in the case of magnesium, carbonic anhydride is evolved and basic salts are formed, which vary in composition according to the temperature and conditions of the reaction. By mixing cold solutions, a voluminous blue precipitate is formed, containing an equivalent proportion of cupric hydroxide and carbonate (after standing or heating, its composition is the same as malachite, sp. gr. 3·51: 2CuSO4 + 2Na2CO3 + H2O = CuCO3,CuH2O2 + 2Na2SO4 + CO2. If the resultant blue precipitate be heated in the liquid, it loses water and is transformed into a granular green mass of the composition Cu2CO4i.e. into a compound of the normal salt with anhydrous cupric oxide. This salt of the oxide corresponds with orthocarbonic acid, C(OH)4 = CH4O4 where 4H is replaced by 2Cu. On further boiling this salt loses a portion of the carbonic acid, forming black cupric oxide, so unstable is the compound of copper with carbonic anhydride. Another basic salt which occurs in nature, 2CuCO3,CuH2O2, is known as azurite, or blue carbonate of copper; it also loses carbonic acid when boiled with water. On mixing a solution of cupric sulphate with sodium sesquicarbonate no precipitate is at first obtained, but after boiling a precipitate is formed having the composition of malachite. Debray obtained artificial azurite by heating cupric nitrate with chalk.

[10 bis] Although sulphate of copper usually crystallises with 5H2O, that is, differently to the sulphates of Mg, Fe, and Mn, it is nevertheless perfectly isomorphous with them, as is seen not only in the fact that it gives isomorphous mixtures with them, containing a similar amount of water of crystallisation, but also in the ease with which it forms, like all bases analogous to MgO, double salts, R2Cu(SO4)2,6H2O, where R = K, Rb, Cs, of the monoclinic system.

Salts of this kind, like CuCl2,2KCl,2H2O,PtK2Cy4, &c., present a composition CuX2 if the representation of double salts given in Chapter XXIII., Note 11, be admitted, because they, like Cu(HO)2, contain Cu(X2K)2, where X2 = SO4, i.e. the residue of sulphuric acid, which combines with H2, and is therefore able to replace the H2 by X2 or O. A detailed study of the crystalline forms of these salts, made by Tutton (1893) (see Chapter XIII., Note 1), showed: (1) that 22 investigated salts of the composition R2M(SO4),6H2O, where R = K, Rb, Cs, and M = Mg, Zn, Cd, Mn, Fe, Co, Ni, Cu, present a complete crystallographic resemblance; (2) that in all respects the Rb salts present a transition between the K and Cs salts; (3) that the Cs salts form crystals most easily, and the K salts the most difficultly, and that for the K salts of Cd and Mn it was even impossible to obtain well-formed crystals; (4) that notwithstanding the closeness of their angles, the general appearance (habit) of the potassium compound differs very clearly from the Cs salts, while the Rb salts present a distinct transition in this respect; (5) that the angle of the inclination of one of the axes to the plane of the two other axes showed that in the K salts (angle from 75° to 75° 38') the inclination is least, in the Cs salts (from 72° 52' to 73° 50') greatest, and in the Rb salts (from 73° 57' to 74° 42') intermediate between the two; the replacement of Mg … Cu produces but a very small change in this angle; (6) that the other angles and the ratio of the axes of the crystals exhibit a similar variation; and (7) that thus the variation of the form is chiefly determined by the atomic weight of the alkaline metal. As an example we cite the magnitude of the inclination of the axes of R2M(SO4)2,6H2O.

R = K Rb Cs
M = Mg 75° 12' 74° 1' 72° 54'
Zn 75° 12' 74° 7' 72° 59'
Cd 74° 7' 72° 49'
Mn 73° 3' 72° 53'
Fe 75° 28' 74° 16' 73° 8'
Co 75° 5' 73° 59' 72° 52'
Ni 75° 0' 73° 57' 72° 58'
Cu 75° 32' 74° 42' 73° 50'

This shows clearly (within the limits of possible error, which may be as much as 30') the almost perfect identity of the independent crystalline forms notwithstanding the difference of the atomic weights of the diatomic elements, M = Mg, Cu.

[11] In addition to what has been said (Chapter I., Note 65, and Chapter XXII., Note 35) respecting the combination of CuSO4 with water and ammonia, we may add that Lachinoff (1893) showed that CuSO4,5H2O loses 4¾H2O at 180°, that CuSO4,5NH3 also loses 4¾NH3 at 320°, and that only ¼2O and ¼NH3 remain in combination with the CuSO4. The last ¼H2O can only be driven off by heating to 200°, and the last ¼NH3 by heating to 360°. Ammonia displaces water from CuSO4,5H2O, but water cannot displace the ammonia from CuSO4,5NH3. If hydrochloric acid gas be passed over CuSO4,5H2O at the ordinary temperature, it first forms CuSO4,5H2O,3HCl, and then CuSO4,2H2O,2HCl. When air is passed over the latter compound it passes into CuSO4H2O with a small amount of HCl (about ?HCl). At 100° CuSO4,5H2O in a stream of hydrochloric acid gas gives CuSO4,¼H2O,2HCl, and then CuSO4,¼H2O,HCl, whilst after prolonged heating CuSO4 remains, which rapidly passes into CuSO4,5H2O when placed under a bell jar over water. Over sulphuric acid, however, CuSO4,5H2O only parts with 3H2O, and if CuSO4,2H2O be placed over water it again forms CuSO4,5H2O, and so on.

[11 bis] Commercial blue vitriol generally contains ferrous sulphate. The salt is purified by converting the ferrous salt into a ferric salt by heating the solution with chlorine or nitric acid. The solution is then evaporated to dryness, and the unchanged cupric sulphate extracted from the residue, which will contain the larger portion of the ferric oxide. The remainder will be separated if cupric hydroxide is added to the solution and boiled; the cupric oxide, CuO, then precipitates the ferric oxide, Fe2O3, just as it is itself precipitated by silver oxide. But the solution will contain a small proportion of a basic salt of copper, and therefore sulphuric acid must be added to the filtered solution, and the salt allowed to crystallise. Acid salts are not formed, and cupric sulphate itself has an acid reaction on litmus paper.

[12] Among the alloys of copper resembling brass, delta metal, invented by A. Dick (London) is largely used (since 1883). It contains 55 p.c. Cu, and 41 p.c. Zn, the remaining 4 p.c. being composed of iron (as much as 3½ p.c., which is first alloyed with zinc), or of cobalt, and manganese, and certain other metals. The sp. gr. of delta metal is 8·4. It melts at 950°, and then becomes so fluid that it fills up all the cavities in a mould and forms excellent castings. It has a tensile strength of 70 kilos per sq. mm. (gun metal about 20, phosphor bronze about 30). It is very soft, especially when heated to 600°, but after forging and rolling it becomes very hard; it is more difficultly acted upon by air and water than other kinds of brass, and preserves its golden yellow colour for any length of time, especially if well polished. It is used for making bearings, screw propellers, valves, and many other articles. In general the alloys of Cu and Zn containing about ? p.c. by weight of copper were for a long time almost exclusively made in Sweden and England (Bristol, Birmingham). These alloys for the most part are cheaper, harder, and more fusible than copper alone, and form good castings. The alloys containing 45–80 p.c. Cu crystallise in cubes if slowly cooled (Bi also gives crystals). By washing the surface of brass with dilute sulphuric acid, Zn is removed and the article acquires the colour of copper. The alloys approaching Zn2Cu3 in their composition exhibit the greatest resistance (under other equal conditions; of purity, forging, rolling, &c.) The addition of 3 p.c. Al, or 5 p.c. Sn, improves the quality of brass. Respecting aluminium bronze see Chapter XVII. p. 88.

[12 bis] Ball (also Kamensky), 1888, by investigating the electrical conductivity of the alloys of antimony and copper with lead, came to the conclusion that only two definite compounds of antimony and copper exist, whilst the other alloys are either alloys of these two together or with antimony or with copper. These compounds are Cu2Sb and Cu4Sb—one corresponds with the maximum, and the other with the minimum, electrical resistance. In general, the resistance offered to an electrical current forms one of the methods by which the composition of definite alloys (for example, Pb2Zn7) is often established, whilst the electromotive force of alloys affords (Laurie, 1888) a still more accurate method—for instance, several definite compounds were discovered by this method among the alloys of copper with zinc and tin; but we will not enter into any details of this subject, because we avoid all references to electricity, although the reader is recommended to make himself acquainted with this branch of science, which has many points in common with chemistry. The study of alloys regarded as solid solutions should, in my opinion, throw much light upon the question of solutions, which is still obscure in many aspects and in many branches of chemistry.

Fig. 97.—Cupel for silver assaying.

see caption

Fig. 98.—Clay muffle.

[13] There are not many soft metals; lead, tin, copper, silver, iron, and gold are somewhat soft, and potassium and sodium very soft. The metals of the alkaline earths are sonorous and hard, and many other metals are even brittle, especially bismuth and antimony. But the very slight significance which these properties have in determining the fundamental chemical properties of substances (although, however, of immense importance in the practical applications of metals) is seen from the example shown by zinc, which is hard at the ordinary temperature, soft at 100°, and brittle at 200°.

see caption

Fig. 99.—Portable muffle furnace.

As the value of silver depends exclusively on its purity, and as there is no possibility of telling the amount of impurities alloyed with it from its external appearance, it is customary in most countries to mark an article with the amount of pure silver it contains after an accurately-made analysis known as the assay of the silver. In France the assay of silver shows the amount of pure silver in 1,000 parts by weight; in Russia the amount of pure silver in 96 parts—that is, the assay shows the number of zolotniks (4·26 grams) of pure silver in one pound (410 grams) of alloyed silver. Russian silver is generally 84 assay—that is, contains 84 parts by weight of pure silver and 12 parts of copper and other metals. French money contains 90 p.c. (in the Russian system this will be 86·4 assay) by weight of silver [English coins and jewellery contain 92·5 p.c. of silver]; the silver rouble is of 83? assay—that is, it contains 86·8 p.c. of silver—and the smaller Russian silver coinage is of 48 assay, and therefore contains 50 p.c. of silver. Silver ornaments and articles are usually made in Russia of 84 and 72 assay. As the alloys of silver and copper, especially after being subjected to the action of heat, are not so white as pure silver, they generally undergo a process known as ‘blanching’ (or ‘pickling’) after being worked up. This consists in removing the copper from the surface of the article by subjecting it to a dark-red heat and then immersing it in dilute acid. During the calcination the copper on the surface is oxidised, whilst the silver remains unchanged; the dilute acid then dissolves the copper oxides formed, and pure silver is left on the surface. The surface is dull after this treatment, owing to the removal of a portion of the metal by the acid. After being polished the article acquires the desired lustre and colour, so as to be indistinguishable from a pure silver object. In order to test a silver article, a portion of its mass must be taken, not from the surface, but to a certain depth. The methods of assay used in practice are very varied. The commonest and most often used is that known as cupellation. It is based on the difference in the oxidisability of copper, lead, and silver. The cupel is a porous cup with thick sides, made by compressing bone ash. The porous mass of bone ash absorbs the fused oxides, especially the lead oxide, which is easily fusible, but it does not absorb the unoxidised metal. The latter collects into a globule under the action of a strong heat in the cupel, and on cooling solidifies into a button, which may then be weighed. Several cupels are placed in a muffle. A muffle is a semi-cylindrical clay vessel, shown in the accompanying drawing. The sides of the muffle are pierced with several orifices, which allow the access of air into it. The muffle is placed in a furnace, where it is strongly heated. Under the action of the air entering the muffle the copper of the silver alloy is oxidised, but as the oxide of copper is infusible, or, more strictly speaking, difficultly fusible, a certain quantity of lead is added to the alloy; the lead is also oxidised by the air at the high temperature of the muffle, and gives the very fusible lead oxide. The copper oxide then fuses with the lead oxide, and is absorbed by the cupel, whilst the silver remains as a bright white globule. If the weight of the alloy taken and of the silver left on the cupel be determined, it is possible to calculate the composition of the alloy. Thus the essence of cupellation consists in the separation of the oxidisable metals from silver, which does not oxidise under the action of heat. A more accurate method, based on the precipitation of silver from its solutions in the form of silver chloride, is described in detail in works on analytical chemistry.

[14] In America, whence the largest amount of silver is now obtained, ores are worked containing not more than ? p.c. of silver, whilst at ½ p.c. its extraction is very profitable. Moreover, the extraction of silver from ores containing not more than 0·01 p.c. of this metal is sometimes profitable. The majority of the lead smelted from galena contains silver, which is extracted from it. Thus near Arras, in France, an ore is worked which contains about 65 parts of lead and 0·088 part of silver in 100 parts of ore, which corresponds with 136 parts of silver in 100,000 parts of lead. At Freiberg, in Saxony, the ore used (enriched by mechanical dressing) contains about 0·9 of silver, 160 of lead, and 2 of copper in 10,000 parts. In every case the lead is first extracted in the manner described in Chapter XVIII., and this lead will contain all the silver. Not unfrequently other ores of silver are mixed with lead ores, in order to obtain an argentiferous lead as the product. The extraction of small quantities of silver from lead is facilitated by the fact (Pattinson's process) that molten argentiferous lead in cooling first deposits crystals of pure lead, which fall to the bottom of the cooling vessel, whilst the proportion of silver in the unsolidified mass increases owing to the removal of the crystals of lead. The lead is enriched in this manner until it contains 1/400 part of silver, and is then subjected to cupellation on a larger scale. According to Park's process, zinc is added to the molten argentiferous lead, and the alloy of Pb and Zn, which first separates out on cooling, is collected. This alloy is found to contain all the silver previously contained in the lead. The addition of 0·5 p.c. of aluminium to the zinc (Rossler and Edelman) facilitates the extraction of the Ag from the resultant alloy besides preventing oxidation; for, after re-melting, nearly all the lead easily runs off (remains fluid), and leaves an alloy containing about 30 p.c. Ag and about 70 p.c. Zn. This alloy may be used as an anode in a solution of ZnCl2, when the Zn is deposited on the cathode, leaving the silver with a small amount of Pb, &c. behind. The silver can be easily obtained pure by treating it with dilute acids and cupelling.

The ores of silver which contain a larger amount of it are: silver glance, Ag2S (sp. gr. 7·2); argentiferous-copper glance, CuAgS; horn silver or chloride of silver, AgCl; argentiferous grey copper ore; polybasite, M9RS6 (where M = Ag, Cu, and R = Sb, As), and argentiferous gold. The latter is the usual form in which gold is found in alluvial deposits and ores. The crystals of gold from the Berezoffsky mines in the Urals contain 90 to 95 of gold and 5 to 9 of silver, and the Altai gold contains 50 to 65 of gold and 36 to 38 of silver. The proportion of silver in native gold varies between these limits in other localities. Silver ores, which generally occur in veins, usually contain native silver and various sulphur compounds. The most famous mines in Europe are in Saxony (Freiberg), which has a yearly output of as much as 26 tons of silver, Hungary, and Bohemia (41 tons). In Russia, silver is extracted in the Altai and at Nerchinsk (17 tons). The richest silver mines known are in America, especially in Chili (as much as 70 tons), Mexico (200 tons), and more particularly in the Western States of North America. The richness of these mines may be judged from the fact that one mine in the State of Nevada (Comstock, near Washoe and the cities of Gold Hill and Virginia), which was discovered in 1859, gave an output of 400 tons in 1866. In place of cupellation, chlorination may also be employed for extracting silver from its ores. The method of chlorination consists in converting the silver in an ore into silver chloride. This is either done by a wet or by a dry method, roasting the ore with NaCl. When the silver chloride is formed, the extraction of the metal is also done by two methods. The first consists in the silver chloride being reduced to metal by means of iron in rotating barrels, with the subsequent addition of mercury which dissolves the silver, but does not act on the other metals. The mercury holding the silver in solution is distilled, when the silver remains behind. This method is called amalgamation. The other method is less frequently used, and consists in dissolving the silver chloride in sodium chloride or in sodium thiosulphate, and then precipitating the silver from the solution. The amalgamation is then carried on in rotating barrels containing the roasted ore mixed with water, iron, and mercury. The iron reduces the silver chloride by taking up the chlorine from it. The technical details of these processes are described in works on metallurgy. The extraction of AgCl by the wet method is carried on (Patera's process) by means of a solution of hyposulphite of sodium which dissolves AgCl (see Note 23), or by lixiviating with a 2 p.c. solution of a double hyposulphite of Na and Cu (obtained by adding CuSO4 to Na2S2O3). The resultant solution of AgCl is first treated with soda to precipitate PbCO3, and then with Na2S, which precipitates the Ag and Au. The process should be carried on rapidly to prevent the precipitation of Cu2S from the solution of CuSO4 and Na2S2O3.

[15] There is another practical method which is also suitable for separating the silver from the solutions obtained in photography, and consists in precipitating the silver by oxalic acid. In this case the amount of silver in the solution must be known, and 23 grams of oxalic acid dissolved in 400 grams of water must be added for every 60 grams of silver in solution in a litre of water. A precipitate of silver oxalate, Ag2C2O4, is then obtained, which is insoluble in water but soluble in acids. Hence, if the liquid contain any free acid it must be previously freed from it by the addition of sodium carbonate. The resultant precipitate of silver oxalate is dried, mixed with an equal weight of dry sodium carbonate, and thrown into a gently-heated crucible. The separation of the silver then proceeds without an explosion, whilst the silver oxalate if heated alone decomposes with explosion.

According to Stas, the best method for obtaining silver from its solutions is by the reduction of silver chloride dissolved in ammonia by means of an ammoniacal solution of cuprous thiosulphate; the silver is then precipitated in a crystalline form. A solution of ammonium sulphite may be used instead of the cuprous salt.

[16] Silver is very malleable and ductile; it may be beaten into leaves 0·002 mm. in thickness. Silver wire may be made so fine that 1 gram is drawn into a wire 2½ kilometres long. In this respect silver is second only to gold. A wire of 2 mm. diameter breaks under a strain of 20 kilograms.

[17] In melting, silver absorbs a considerable amount of oxygen, which is disengaged on solidifying. One volume of molten silver absorbs as much as 22 volumes of oxygen. In solidifying, the silver forms cavities like the craters of a volcano, and throws off metal, owing to the evolution of the gas; all these phenomena recall a volcano on a miniature scale (Dumas). Silver which contains a small quantity of copper or gold, &c., does not show this property of dissolving oxygen.

The absorption of oxygen by molten silver is, however, an oxidation, but it is at the same time a phenomenon of solution. One cubic centimetre of molten silver can dissolve twenty-two cubic centimetres of oxygen, which, even at 0°, only weighs 0·03 gram, whilst 1 cubic centimetre of silver weighs at least 10 grams, and therefore it is impossible to suppose that the absorption of the oxygen is attended by the formation of any definite compound (rich in oxygen) of silver and oxygen (about 45 atoms of silver to 1 of oxygen) in any other but a dissociated form, and this is the state in which substances in solution must be regarded (Chapter I.)

Le Chatelier showed that at 300° and 15 atmospheres pressure silver absorbs so much oxygen that it may be regarded as having formed the compound Ag4O, or a mixture of Ag2 and Ag2O. Moreover, silver oxide, Ag2O, only decomposes at 300° under low pressures, whilst at pressures above 10 atmospheres there is no decomposition at 300° but only at 400°.

Stas showed that silver is oxidised by air in the presence of acids. V. d. Pfordten confirmed this, and showed that an acidified solution of potassium permanganate rapidly dissolves silver in the presence of air.

[18] When solutions of AgNO3, FeSO4, sodium citrate, and NaHO are mixed together in the manner described above, they throw down a precipitate of a beautiful lilac colour; when transferred to a filter paper the precipitate soon changes colour, and becomes dark blue. To obtain the substance as pure as possible it is washed with a 5–10 p.c. solution of ammonium nitrate; the liquid is decanted, and 150 c.c. of water poured over the precipitate. It then dissolves entirely in the water. A small quantity of a saturated solution of ammonium nitrate is added to the solution, and the silver in solution again separates out as a precipitate. These alternate solutions and precipitations are repeated seven or eight times, after which the precipitate is transferred to a filter and washed with 95 p.c. alcohol until the filtrate gives no residue on evaporation. An analysis of the substance so obtained showed that it contained from 97·18 p.c. to 97·31 p.c. of metallic silver. It remained to discover what the remaining 2–3 p.c. were composed of. Are they merely impurities, or is the substance some compound of silver with oxygen or hydrogen, or does it contain citric acid in combination which might account for its solubility? The first supposition is set aside by the fact that no gases are disengaged by the precipitate of silver, either under the action of gases or when heated. The second supposition is shown to be impossible by the fact that there is no definite relation between the silver and citric acid. A determination of the amount of silver in solution showed that the amount of citric acid varies greatly for one and the same amount of silver, and there is no simple ratio between them. Among other methods of preparing soluble silver given by Carey Lea, we may mention the method published by him in 1891. AgNO3 is added to a solution of dextrine in caustic soda or potash; at first a precipitate of brown oxide of silver is thrown down, but the brown colour then changes into a reddish chocolate, owing to the reduction of the silver by the dextrine, and the solution turns a deep red. A few drops of this solution turn water bright red, and give a perfectly transparent liquid. The dextrine solution is prepared by dissolving 40 grams of caustic soda and the same amount of ordinary brown dextrine in two litres of water. To this solution is gradually added 28 grams of AgNO3 dissolved in a small quantity of water.

The insoluble allotropic silver is obtained, as was mentioned above, from a solution of silver prepared in the manner described, by the addition of sulphate of copper, iron, barium, magnesium, &c. In one experiment Lea succeeded in obtaining the insoluble allotropic Ag in a crystalline form. The red solution, described above, after standing several weeks, deposits crystals spontaneously in the form of short black needles and thin prisms, the liquid becoming colourless. This insoluble variety, when rubbed upon paper, has the appearance of bright shining green flakes, which polarise light.

The gold variety is obtained in a different manner to the two other varieties. A solution is prepared containing 200 c.c. of a 10 p.c. solution of nitrate of silver, 200 c.c. of a 20 p.c. solution of Rochelle salt, and 800 c.c. of water. Just as in the previous case the reaction consisted in the reduction of the citrate of silver, so in this case it consists in the reduction of the tartrate, which here first forms a red, and then a black precipitate of allotropic Ag, which, when transferred to the filter, appears of a beautiful bronze colour. After washing and drying, this precipitate acquires the lustre and colour peculiar to polished gold, and this is especially remarked where the precipitate comes into contact with glass or china. An analysis of the golden variety gave a percentage composition of 98·750 to 98·749 Ag. Both the insoluble varieties (the blue and gold) have a different specific gravity from ordinary silver. Whilst that of fused silver is 10·50, and of finely-divided silver 10·62, the specific gravity of the blue insoluble variety is 9·58, and of the gold variety 8·51. The gold variety passes into ordinary Ag with great ease. This transition may even be remarked on the filter in those places which have accidentally not been moistened with water. A simple shock, and therefore friction of one particle upon another, is enough to convert the gold variety into normal white silver. Carey Lea sent samples of the gold variety for a long distance by rail packed in three tubes, in which the silver occupied about the quarter of their volume; in one tube only he filled up this space with cotton-wool. It was afterwards found that the shaking of the particles of Ag had completely converted it into ordinary white silver, and that only the tube containing the cotton-wool had preserved the golden variety intact.

The soluble variety of Ag also passes into the ordinary state with great ease, the heat of conversion being, as Prange showed in 1890, about +60 calories.

[18 bis] The opinion of the nature of soluble silver given below was first enunciated in the Journal of the Russian Chemical Society, February 1, 1890, Vol. XXII., Note 73. This view is, at the present time, generally accepted, and this silver is frequently known as the ‘colloid’ variety. I may add that Carey Lea observed the solution of ordinary molecular silver in ammonia without the access of air.

[18 tri] It is, however, noteworthy that ordinary metallic lead has long been considered soluble in water, that boron has been repeatedly obtained in a brown solution, and that observations upon the development of certain bacteria have shown that the latter die in water which has been for some time in contact with metals. This seems to indicate the passage of small quantities of metals into water (however, the formation of peroxide of hydrogen may be supposed to have some influence in these cases).

[19] Silver suboxide (Ag4O) or argentous oxide is obtained from argentic citrate by heating it to 100° in a stream of hydrogen. Water and argentous citrate are then formed, and the latter, although but slightly soluble in water, gives a reddish-brown solution of colloid silver (Note 18), and when boiled this solution becomes colourless and deposits metallic silver, the argentic salt being again formed. WÖhler, who discovered this oxide, obtained it as a black precipitate by adding potassium hydroxide to the above solution of argentous citrate. With hydrochloric acid the suboxide gives a brown compound, Ag2Cl. Since the discovery of soluble silver the above data cannot be regarded as perfectly trustworthy; it is probable that a mixture of Ag2 and Ag2O was being dealt with, so that the actual existence of Ag4O is now doubtful, but there can be no doubt as to the formation of a subchloride, Ag2Cl (see Note 25), corresponding to the suboxide. The same compound is obtained by the action of light on the higher chloride. Other acids do not combine with silver suboxide, but convert it into an argentic salt and metallic silver. In this respect cuprous oxide presents a certain resemblance to these suboxides. But copper forms a suboxide of the composition Cu4O, which is obtained by the action of an alkaline solution of stannous oxide on cupric hydroxide, and is decomposed by acids into cupric salts and metallic copper. The problems offered by the suboxides, as well as by the peroxides, cannot be considered as fully solved.

[19 bis] Silver peroxide, AgO or Ag2O3, is obtained by the decomposition of a dilute (10 p.c.) solution of silver nitrate by the action of a galvanic current (Ritter). On the positive pole, where oxygen is usually evolved in the decomposition of salts, brittle grey needles with a metallic lustre, which occasionally attain a somewhat considerable size, are then formed. They are insoluble in water, and decompose with the evolution of oxygen when they are dried and heated, especially up to 150°, and, like lead dioxide, barium peroxide, &c., their action is strongly oxidising. When treated with acids, oxygen is evolved and a salt of the oxide formed. Silver peroxide absorbs sulphurous anhydride and forms silver sulphate. Hydrochloric acid evolves chlorine; ammonia reduces the silver, and is itself oxidised, forming water and gaseous nitrogen. Analyses of the above-mentioned crystals show that they contain silver nitrate, peroxide, and water. According to Fisher, they have the composition 4AgO,AgNO3,H2O, and, according to Berthelot, 4Ag2O5,2AgNO3,H2O.

[19 tri] According to Carey Lea, however, oxide of silver still retains water even at 100°, and only parts with it together with the oxygen. Oxide of silver is used for colouring glass yellow.

[20] The reaction of Pb(OH)2 upon AgHO in the presence of NaHO leads to the formation of a compound of both oxides, PbOnAg2O, from which the oxide of lead cannot be removed by alkalies (WÖhler, Leton). WÖhler, Welch, and others obtained crystalline double salts, R2AgX3, by the action of strong solutions of RX of the halogen salts of the alkaline metals upon AgX, where R = Cs, Rb, K.

[20 bis] According to MÜller, ferric oxide is reduced by hydrogen (see Chapter XXII., Note 5) at 295° (into what ?), cupric oxide at 140°, Ni2O3 at 150°; nickelous oxide, NiO, is reduced to the suboxide, Ni2O, at 195°, and to nickel at 270°; zinc oxide requires so high a temperature for its reduction that the glass tube in which MÜller conducted the experiment did not stand the heat; antimony oxide requires a temperature of 215° for its reduction; yellow mercuric oxide is reduced at 130° and the red oxide at 230°; silver oxide at 85°, and platinum oxide even at the ordinary temperature.

[20 tri] A silica compound, Ag2OSiO2 is obtained by fusing AgNO3 with silica; this salt is able to decompose with the evolution of oxygen, leaving Ag + SiO2.

[21] If a solution of a silver salt be precipitated by sodium hydroxide, and aqueous ammonia is added drop by drop until the precipitate is completely dissolved, the liquid when evaporated deposits a violet mass of crystalline silver oxide. If moist silver oxide be left in a strong solution of ammonia it gives a black mass, which easily decomposes with a loud explosion, especially when struck. This black substance is called fulminating silver. Probably this is a compound like the other compounds of oxides with ammonia, and in exploding the oxygen of the silver oxide forms water with the hydrogen of the ammonia, which is naturally accompanied by the evolution of heat and formation of gaseous nitrogen, or, as Raschig states, fulminating silver contains NAg3 or one of the amides (for instance, NHAg2 = NH3 + Ag2O - H2O). Fulminating silver is also formed when potassium hydroxide is added to a solution of silver nitrate in ammonia. The dangerous explosions which are produced by this compound render it needful that great care be taken when salts of silver come into contact with ammonia and alkalis (see Chapter XVI., Note 26).

[22] So that we here encounter the following phenomena: copper displaces silver from the solutions of its salts, and silver oxide displaces copper oxide from cupric salts. Guided by the conceptions enunciated in Chapter XV., we can account for this in the following manner: The atomic volume of silver = 10·3, and of copper = 7·2, of silver oxide = 32, and of copper oxide = 13. A greater contraction has taken place in the formation of cupric oxide, CuO, than in the formation of silver oxide, Ag2O, since in the former (13 - 7 = 6) the volume after combination with the oxygen has increased by very little, whilst the volume of silver oxide is considerably greater than that of the metal it contains [32 - (2 × 10·3) = 11·4]. Hence silver oxide is less compact than cupric oxide, and is therefore less stable; but, on the other hand, there are greater intervals between the atoms in silver oxide than in cupric oxide, and therefore silver oxide is able to give more stable compounds than those of copper oxide. This is verified by the figures and data of their reactions. It is impossible to calculate for cupric nitrate, because this salt has not yet been obtained in an anhydrous state; but the sulphates of both oxides are known. The specific gravity of copper sulphate in an anhydrous state is 3·53, and of silver sulphate 5·36; the molecular volume of the former is 45, and of the latter 58. The group SO3 in the copper occupies, as it were, a volume 45 - 13 = 32, and in the silver salt a volume 58 - 32 = 26; hence a smaller contraction has taken place in the formation of the copper salt from the oxide than in the formation of the silver salt, and consequently the latter should be more stable than the former. Hence silver oxide is able to decompose the salt of copper oxide, whilst with respect to the metals both salts have been formed with an almost identical contraction, since 58 volumes of the silver salt contain 21 volumes of metal (difference = 37), and 45 volumes of the copper salt contain 7 volumes of copper (difference = 38). Besides which, it must be observed that copper oxide displaces iron oxide, just as silver oxide displaces copper oxide. Silver, copper, and iron, in the form of oxides, displace each other in the above order, but in the form of metals in a reverse order (iron, copper, silver). The cause of this order of the displacement of the oxides lies, amongst other things, in their composition. They have the composition Ag2O, Cu2O2, Fe2O3; the oxide containing a less proportion of oxygen displaces that containing a larger proportion, because the basic character diminishes with the increase of contained oxygen.

Copper also displaces mercury from its salts. It may here be remarked that Spring (1888), on leaving a mixture of dry mercurous chloride and copper for two hours, observed a distinct reduction, which belongs to the category of those phenomena which demonstrate the existence of a mobility of parts (i.e. atoms and molecules) in solid substances.

[22 bis] The reaction of 1 part by weight of AgNO3 requires (according to Kremers) the following amounts of water: at 0°, 0·82 part, at 19°·5, 0·41 part, at 54°, 0·20 part, at 110°, 0·09 part, and, according to Tilden, at 125°, 0·0617 part, and at 133°, 0·0515 part.

[22 tri] It may be remarked that the black stain produced by the reduction of metallic silver disappears under the action of a solution of mercuric chloride or of potassium cyanide, because these salts act on finely-divided silver.

[23] Silver chloride is almost perfectly insoluble in water, but is somewhat soluble in water containing sodium chloride or hydrochloric acid, or other chlorides, and many salts, in solution. Thus at 100°, 100 parts of water saturated with sodium chloride dissolve 0·4 part of silver chloride. Bromide and iodide of silver are less soluble in this respect, as also in regard to other solvents. It should be remarked that silver chloride dissolves in solutions of ammonia, potassium cyanide, and of sodium thiosulphate, Na2S2O3. Silver bromide is almost perfectly analogous to the chloride, but silver iodide is nearly insoluble in a solution of ammonia. Silver chloride even absorbs dry ammonia gas, forming very unstable ammoniacal compounds. When heated, these compounds (Vol. I. p. 250, Note 8) evolve the ammonia, as they also do under the action of all acids. Silver chloride enters into double decomposition with potassium cyanide, forming a soluble double cyanide, which we shall presently describe; it also forms a soluble double salt, NaAgS2O3, with sodium thiosulphate.

Silver chloride offers different modifications in the structure of its molecule, as is seen in the variations in the consistency of the precipitate, and in the differences in the action of light which partially decomposes AgCl (see Note 25). Stas and Carey Lea investigated this subject, which has a particular importance in photography, because silver bromide also gives photo-salts. There is still much to be discovered in this respect, since Abney showed that perfectly dry AgCl placed in a vacuum in the dark is not in the least acted upon when subsequently exposed to light.

[24] Silver bromide and iodide (which occur as the minerals bromite and iodite) resemble the chloride in many respects, but the degree of affinity of silver for iodine is greater than that for chlorine and bromine, although less heat is evolved (see Note 28 bis). Deville deduced this fact from a number of experiments. Thus silver chloride, when treated with hydriodic acid, evolves hydrochloric acid, and forms silver iodide. Finely-divided silver easily liberates hydrogen when treated with hydriodic acid; it produces the same decomposition with hydrochloric acid, but in a considerably less degree and only on the surface. The difference between silver chloride and iodide is especially remarkable, since the formation of the former is attended with a greater contraction than that of the latter. The volume of AgCl = 26; of chlorine 27, of silver 10, the sum = 37, hence a contraction has ensued; and in the formation of silver iodide an expansion takes place, for the volume of Ag is 10, of I 26, and of AgI 39 instead of 36 (density, AgCl, 5·59; AgI, 5·67). The atoms of chlorine have united with the atoms of silver without moving asunder, whilst the atoms of iodine must have moved apart in combining with the silver. It is otherwise with respect to the metal; the distance between its atoms in the metal = 2·2, in silver chloride = 3·0, and in silver iodide = 3·5; hence its atoms have moved asunder considerably in both cases. It is also very remarkable, as Fizeau observed, that the density of silver iodide increases with a rise of temperature—that is, a contraction takes place when it is heated and an expansion when it is cooled.

In order to explain the fact that in silver compounds the iodide is more stable than the chloride and oxide, Professor N. N. Beketoff, in his ‘Researches on the Phenomena of Substitutions’ (Kharkoff, 1865), proposed the following original hypothesis, which we will give in almost the words of the author:—In the case of aluminium, the oxide, Al2O3, is more stable than the chloride, Al2Cl6, and the iodide, Al2I6. In the oxide the amount of the metal is to the amount of the element combined with it as 54·8 (Al = 27·3) is to 48, or in the ratio 112 : 100; for the chloride the ratio is = 25 : 100; for the iodide it = 7 : 100. In the case of silver the oxide (ratio = 1350 : 100) is less stable than the chloride (ratio = 304 : 100), and the iodide (ratio of the weight of metal to the weight of the halogen = 85 : 100) is the most stable. From these and similar examples it follows that the most stable compounds are those in which the weights of the combined substances are equal. This may be partly explained by the attraction of similar molecules even after their having passed into combination with others. This attraction is proportional to the product of the acting masses. In silver oxide the attraction of Ag2 for Ag2 = 216 × 216 = 46,656, and the attraction of Ag2 for O = 216 × 16 = 3,456. The attraction of like molecules thus counteracts the attraction of the unlike molecules. The former naturally does not overcome the latter, otherwise there would be a disruption, but it nevertheless diminishes the stability. In the case of an equality or proximity of the magnitude of the combining masses, the attraction of the like parts will counteract the stability of the compound to the least extent—in other words, with an inequality of the combined masses, the molecules have an inclination to return to an elementary state, to decompose, which does not exist to such an extent where the combined masses are equal. There is, therefore, a tendency for large masses to combine with large, and for small masses to combine with small. Hence Ag2O + 2KI gives K2O + 2AgI. The influence of an equality of masses on the stability is seen particularly clearly in the effect of a rise of temperature. Argentic, mercuric, auric and other oxides composed of unequal masses, are somewhat readily decomposed by heat, whilst the oxides of the lighter metals (like water) are not so easily decomposed by heat. Silver chloride and iodide approach the condition of equality, and are not decomposed by heat. The most stable oxides under the action of heat are those of magnesium, calcium, silicon, and aluminium, since they also approach the condition of equality. For the same reason hydriodic acid decomposes with greater facility than hydrochloric acid. Chlorine does not act on magnesia or alumina, but it acts on lime and silver oxide, &c. This is partially explained by the fact that by considering heat as a mode of motion, and knowing that the atomic heats of the free elements are equal, it must be supposed that the amount of the motion of atoms (their vis viva) is equal, and as it is equal to the product of the mass (atomic weight) into the square of the velocity, it follows that the greater the combining weight the smaller will be the square of the velocity, and if the combining weights be nearly equal, then the velocities also will be nearly equal. Hence the greater the difference between the weights of the combined atoms the greater will be the difference between their velocities. The difference between the velocities will increase with the temperature, and therefore the temperature of decomposition will be the sooner attained the greater be the original difference—that is, the greater the difference of the weights of the combined substances. The nearer these weights are to each other, the more analogous the motion of the unlike atoms, and consequently, the more stable the resultant compound.

The instability of cupric chloride and nitric oxide, the absence of compounds of fluorine with oxygen, whilst there are compounds of oxygen with chlorine, the greater stability of the oxygen compounds of iodine than those of chlorine, the stability of boron nitride, and the instability of cyanogen, and a number of similar instances, where, judging from the above argument, one would expect (owing to the closeness of the atomic weights) a stability, show that Beketoff's addition to the mechanical theory of chemical phenomena is still far from sufficient for explaining the true relations of affinities. Nevertheless, in his mode of explaining the relative stabilities of compounds, we find an exceedingly interesting treatment of questions of primary importance. Without such efforts it would be impossible to generalise the complex data of experimental knowledge.

Fluoride of silver, AgF, is obtained by dissolving Ag2O or Ag2CO3 in hydrofluoric acid. It differs from the other halogen salts of silver in being soluble in water (1 part of salt in 0·55 of water). It crystallises from its solution in prisms, AgFH2O (Marignac), or AgF2H2O (Pfaundler), which lose their water in vacuo. GÜntz (1891), by electrolising a saturated solution of Ag2F, obtained polyfluoride of silver, Ag2F, which is decomposed by water into AgF + Ag. It is also formed by the action of a strong solution of AgF upon finely-divided (precipitated) silver.

[24 bis] The changes brought about by the action of light necessitate distinguishing the photo-salts of silver.

[25] In photography these are called ‘developers.’ The most common developers are: solutions of ferrous sulphate, pyrogallol, ferrous oxalate, hydroxylamine, potassium sulphite, hydroquinone (the last acts particularly well and is very convenient to use), &c. The chemical processes of photography are of great practical and theoretical interest; but it would be impossible in this work to enter into this special branch of chemistry, which has as yet been very little worked out from a theoretical point of view. Nevertheless, we will pause to consider certain aspects of this subject which are of a purely chemical interest, and especially the facts concerning subchloride of silver, Ag2Cl (see Note 19), and the photo-salts (Note 23). There is no doubt that under the action of light, AgCl becomes darker in colour, decreases in weight, and probably forms a mixture of AgCl, Ag2Cl, and Ag. But the isolation of the subchloride has only been recently accomplished by GÜntz by means of the Ag2F, discovered by him (see Note 24). Many chemists (and among them Hodgkinson) assumed that an oxychloride of silver was formed by the decomposition of AgCl under the action of light. Carey Lea's (1889) and A. Richardson's (1891) experiments showed that the product formed does not, however, contain any oxygen at all, and the change in colour produced by the action of light upon AgCl is most probably due to the formation of Ag2Cl. This substance was isolated by GÜntz (1891) by passing HCl over crystals of Ag2F. He also obtained Ag2I in a similar manner by passing HI, and Ag2S by passing H2S over Ag2F. Ag2Cl is best prepared by the action of phosphorus trichloride upon Ag2F. At the temperature of its formation Ag2Cl has an easily changeable tint, with shades of violet red to violet black. Under the action of light a similar (isomeric) substance is obtained, which splits up into AgCl + Ag when heated. With potassium cyanide Ag2Cl gives Ag + AgCN + KCl, whence it is possible to calculate the heat of formation of Ag2Cl; it = 29·7, whilst the heat of formation of AgCl = 29·2—i.e. the reaction 2AgCl = Ag2Cl + Cl corresponds to an absorption of 28·7 major calories. If we admit the formation of such a compound by the action of light, it is evident that the energy of the light is consumed in the above reaction. Carey Lea (1892) subjected AgCl, AgBr, and AgI to a pressure (of course in the dark) of 3,000 atmospheres, and to trituration with water in a mortar, and observed a change of colour indicating incipient decomposition, which is facilitated under the action of light by the molecular currents set up (Lermontoff, Egoroff). The change of colour of the halogen salts of silver under the action of light, and their faculty of subsequently giving a visible photographic image under the action of ‘developers,’ must now be regarded as connected with the decomposition of AgX, leading to the formation of Ag2X, and the different tinted photo-salts must be considered as systems containing such Ag2X's. Carey Lea obtained photo-salts of this kind not only by the action of light but also in many other ways, which we will enumerate to prove that they contain the products of an incomplete combination of Ag with the halogens, (for the salts Ag2X must be regarded as such). The photo-salts have been obtained (1) by the imperfect chlorination of silver; (2) by the incomplete decomposition of Ag2O or Ag2CO3 by alternately heating and treating with a halogen acid; (3) by the action of nitric acid or Na2S2O3 upon Ag2Cl; (4) by mixing a solution of AgNO3 with the hydrates of FeO, MnO and CrO, and precipitating by HCl; (5) by the action of HCl upon the product obtained by the reduction of citrate of silver in hydrogen (Note 19), and (6) by the action of milk sugar upon AgNO3 together with soda and afterwards acidulating with HCl. All these reactions should lead to the formation of products of imperfect combination with the halogens and give photo-salts of a similar diversity of colour to those produced by the action of developers upon the halogen salts of silver after exposure to light.

[25 bis] In order to determine when the reaction is at an end, a few drops of a solution of K2CrO4 are added to the solution of the chloride. Before all the chlorine is precipitated as AgCl, the precipitate (after shaking) is white (since Ag2CrO4 with 2RCl gives 2AgCl); but when all the chlorine is thrown down Ag2CrO4 is formed, which colours the precipitate reddish-brown. In order to obtain accurate results the liquid should be neutral to litmus.

[25 tri] Silver cyanide, AgCN, is closely analogous to the haloid salts of silver. It is obtained, in similar manner to silver chloride, by the addition of potassium cyanide to silver nitrate. A white precipitate is then formed, which is almost insoluble in boiling water. It is also, like silver chloride, insoluble in dilute acids. However, it is dissolved when heated with nitric acid, and both hydriodic and hydrochloric acids act on it, converting it into silver chloride and iodide. Alkalis, however, do not act on silver cyanide, although they act on the other haloid salts of silver. Ammonia and solutions of the cyanides of the alkali metals dissolve silver cyanide, as they do the chloride. In the latter case double cyanides are formed—for example, KAgC2N2. This salt is obtained in a crystalline state on evaporating a solution of silver cyanide in potassium cyanide. It is much more stable than silver cyanide itself. It has a neutral reaction, does not change in the air, and does not smell of hydrocyanic acid. Many acids, in acting on a solution of this double salt, precipitate the insoluble silver cyanide. Metallic silver dissolves in a solution of potassium cyanide in the presence of air, with formation of the same double salt and potassium hydroxide, and when silver chloride dissolves in potassium cyanide it forms potassium chloride, besides the salt KAgC2N2. This double salt of silver is used in silver plating. For this purpose potassium cyanide is added to its solution, as otherwise silver cyanide, and not metallic silver, is deposited by the electric current. If two electrodes—one positive (silver) and the other negative (copper)—be immersed in such a solution, silver will be deposited upon the latter, and the silver of the positive electrode will be dissolved by the liquid, which will thus preserve the same amount of metal in solution as it originally contained. If instead of the negative electrode a copper object be taken, well cleaned from all dirt, the silver will be deposited in an even coating; this, indeed, forms the mode of silver plating by the wet method, which is most often used in practice. A solution of one part of silver nitrate in 30 to 50 parts of water, and mixed with a sufficient quantity of a solution of potassium cyanide to redissolve the precipitate of silver cyanide formed, gives a dull coating of silver, but if twice as much water be used the same mixture gives a bright coating.

Silver plating in the wet way has now replaced to a considerable extent the old process of dry silvering, because this process, which consists in dissolving silver in mercury and applying the amalgam to the surface of the objects, and then vaporising the mercury, offers the great disadvantage of the poisonous mercury fumes. Besides these, there is another method of silver plating, based on the direct displacement of silver from its salts by other metals—for example, by copper. The copper reduces the silver from its compounds, and the silver separated is deposited upon the copper. Thus a solution of silver chloride in sodium thiosulphate deposits a coating of silver upon a strip of copper immersed in it. It is best for this purpose to take pure silver sulphite. This is prepared by mixing a solution of silver nitrate with an excess of ammonia, and adding a saturated solution of sodium sulphite and then alcohol, which precipitates silver sulphite from the solution. The latter and its solutions are very easily decomposed by copper. Metallic iron produces the same decomposition, and iron and steel articles may be very readily silver-plated by means of the thiosulphate solution of silver chloride. Indeed, copper and similar metals may even be silver-plated by means of silver chloride; if the chloride of silver, with a small amount of acid, be rubbed upon the surface of the copper, the latter becomes covered with a coating of silver, which it has reduced.

Silver plating is not only applicable to metallic objects, but also to glass, china, &c. Glass is silvered for various purposes—for example, glass globes silvered internally are used for ornamentation, and have a mirrored surface. Common looking-glass silvered upon one side forms a mirror which is better than the ordinary mercury mirrors, owing to the truer colours of the image due to the whiteness of the silver. For optical instruments—for example, telescopes—concave mirrors are now made of silvered glass, which has first been ground and polished into the required form. The silvering of glass is based on the fact that silver which is reduced from certain solutions deposits itself uniformly in a perfectly homogeneous and continuous but very thin layer, forming a bright reflecting surface. Certain organic substances have the property of reducing silver in this form. The best known among these are certain aldehydes—for instance, ordinary acetaldehyde, C2H4O, which easily oxidises in the air and forms acetic acid, C2H4O2. This oxidation also easily takes place at the expense of silver oxide, when a certain amount of ammonia is added to the mixture. The oxide of silver gives up its oxygen to the aldehyde, and the silver reduced from it is deposited in a metallic state in a uniform bright coating. The same action is produced by certain saccharine substances and certain organic acids, such as tartaric acid, &c.

[26] The phenomenon which then takes place is described by Stas as follows, in a manner which is perfect in its clearness and accuracy: if silver oxide or carbonate be suspended in water, and an excess of water saturated with chlorine be added, all the silver is converted into chloride, just as is the case with oxide or carbonate of mercury, and the water then contains, besides the excess of chlorine, only pure hypochlorous acid without the least trace of chloric or chlorous acid. If a stream of chlorine be passed into water containing an excess of silver oxide or silver carbonate while the liquid is continually agitated, the reaction is the same as the preceding; silver chloride and hypochlorous acid are formed. But this acid does not long remain in a free state: it gradually acts on the silver oxide and gives silver hypochlorite, i.e. AgClO. If, after some time, the current of chlorine be stopped but the shaking continued, the liquid loses its characteristic odour of hypochlorous acid, while preserving its energetic decolorising property, because the silver hypochlorite which is formed is easily soluble in water. In the presence of an excess of silver oxide this salt can be kept for several days without decomposition, but it is exceedingly unstable when no excess of silver oxide or carbonate is present. So long as the solution of silver hypochlorite is shaken up with the silver oxide, it preserves its transparency and bleaching property, but directly it is allowed to stand, and the silver oxide settles, it becomes rapidly cloudy and deposits large flakes of silver chloride, so that the black silver oxide which had settled becomes covered with the white precipitate. The liquid then loses its bleaching properties and contains silver chlorate, i.e. AgClO3, in solution, which has a slightly alkaline reaction, owing to the presence of a small amount of dissolved oxide. In this manner the reactions which are consecutively accomplished may be expressed by the equations:

6Cl2 + 3Ag2O + 3H2O = 6AgCl + 6HClO;
6HClO + 3Ag2O = 3H2O + 6AgClO;
6AgClO = 4AgCl + 2AgClO3.

Hence, Stas gives the following method for the preparation of silver chlorate: A slow current of chlorine is caused to act on oxide of silver, suspended in water which is kept in a state of continual agitation. The shaking is continued after the supply of chlorine has been stopped, in order that the free hypochlorous acid should pass into silver hypochlorite, and the resultant solution of the hypochlorite is drawn off from the sediment of the excess of silver oxide. This solution decomposes spontaneously into silver chloride and chlorate. The pure silver chlorate, AgClO3, does not change under the action of light. The salt is prepared for further use by drying it in dry air at 150°. It is necessary during drying to prevent the access of any organic matter; this is done by filtering the air through cotton wool, and passing it over a layer of red-hot copper oxide.

[26 bis] The results given by Stas' determinations have recently been recalculated and certain corrections have been introduced. We give in the context the average results of van der Plaats and Thomsen's calculations, as well as in Table III. neglecting the doubtful thousandths.

[27] This hypothesis, for the establishment or refutation of which so many researches have been made, is exceedingly important, and fully deserves the attention which has been given to it. Indeed, if it appeared that the atomic weights of all the elements could be expressed in whole numbers with reference to hydrogen, or if they at least proved to be commensurable with one another, then it could be affirmed with confidence that the elements, with all their diversity, were formed of one material condensed or grouped in various manners into the stable, and, under known conditions, undecomposable groups which we call the atoms of the elements. At first it was supposed that all the elements were nothing else but condensed hydrogen, but when it appeared that the atomic weights of the elements could not be expressed in whole numbers in relation to hydrogen, it was still possible to imagine the existence of a certain material from which both hydrogen and all the other elements were formed. If it should transpire that four atoms of this material form an atom of hydrogen, then the atom of chlorine would present itself as consisting of 142 atoms of this substance, the weight of whose atom would be equal to 0·25. But in this case the atoms of all the elements should be expressed in whole numbers with respect to the weight of the atom of this original material. Let us suppose that the atomic weight of this material is equal to unity, then all the atomic weights should be expressible in whole numbers relatively to this unit. Thus the atom of one element, let us suppose, would weigh m, and of another n, but, as both m and n must be whole numbers, it follows that the atomic weights of all the elements would be commensurable. But it is sufficient to glance over the results obtained by Stas, and to be assured of their accuracy, especially for silver, in order to entirely destroy, or at least strongly undermine, this attractive hypothesis. We must therefore refuse our assent to the doctrine of the building up from a single substance of the elements known to us. This hypothesis is not supported either by any known transformation (for one element has never been converted into another element), or by the commensurability of the atomic weights of the elements. Although the hypothesis of the formation of all the elements from a single substance (for which Crookes has suggested the name protyle) is most attractive in its comprehensiveness, it can neither be denied nor accepted for want of sufficient data. Marignac endeavoured, however, to overcome Stas's conclusions as to the incommensurability of the atomic weights by supposing that in his, as in the determinations of all other observers, there were unperceived errors which were quite independent of the mode of observation—for example, silver nitrate might be supposed to be an unstable substance which changes, under the heatings, evaporations, and other processes to which it is subjected in the reactions for the determination of the combining weight of silver. It might be supposed, for instance, that silver nitrate contains some impurity which cannot be removed by any means; it might also be supposed that a portion of the elements of the nitric acid are disengaged in the evaporation of the solution of silver nitrate (owing to the decomposing action of water), and in its fusion, and that we have not to deal with normal silver nitrate, but with a slightly basic salt, or perhaps an excess of nitric acid which cannot be removed from the salt. In this case the observed combining weight will not refer to an actually definite chemical compound, but to some mixture for which there does not exist any perfectly exact combining relations. Marignac upholds this proposition by the fact that the conclusions of Stas and other observers respecting the combining weights determined with the greatest exactitude very nearly agree with the proposition of the commensurability of the atomic weights—for example, the combining weight of silver was shown to be equal to 107·93, so that it only differs by 0·08 from the whole number 108, which is generally accepted for silver. The combining weight of iodine proved to be equal to 126·85—that is, it differs from 127 by 0·15. The combining weights of sodium, nitrogen, bromine, chlorine, and lithium are still nearer to the whole or round numbers which are generally accepted. But Marignac's proposition will hardly bear criticism. Indeed if we express the combining weights of the elements determined by Stas in relation to hydrogen, the approximation of these weights to whole numbers disappears, because one part of hydrogen in reality does not combine with 16 parts of oxygen, but with 15·92 parts, and therefore we shall obtain, taking H = 1, not the above-cited figures, but for silver 107·38, for bromine 79·55, magnitudes which are still further removed from whole numbers. Besides which, if Marignac's proposition were true the combining weight of silver determined by one method—e.g. by the analysis of silver chlorate combined with the synthesis of silver chloride—would not agree well with the combining weight determined by another method—e.g. by means of the analysis of silver iodate and the synthesis of silver iodide. If in one case a basic salt could be obtained, in the other case an acid salt might be obtained. Then the analysis of the acid salt would give different results from that of the basic salt. Thus Marignac's arguments cannot serve as a support for the vindication of Prout's hypothesis.

In conclusion, I think it will not be out of place to cite the following passage from a paper I read before the Chemical Society of London in 1889 (Appendix II.), referring to the hypothesis of the complexity of the elements recognised in chemistry, owing to the fact that many have endeavoured to apply the periodic law to the justification of this idea ‘dating from a remote antiquity, when it was found convenient to admit the existence of many gods but only one matter.’

‘When we try to explain the origin of the idea of a unique primary matter, we easily trace that, in the absence of deductions from experiment, it derives its origin from the scientifically philosophical attempt at discovering some kind of unity in the immense diversity of individualities which we see around. In classical times such a tendency could only be satisfied by conceptions about the immaterial world. As to the material world, our ancestors were compelled to resort to some hypothesis, and they adopted the idea of unity in the formative material, because they were not able to evolve the conception of any other possible unity in order to connect the multifarious relations of matter. Responding to the same legitimate scientific tendency, natural science has discovered throughout the universe a unity of plan, a unity of forces, and a unity of matter; and the convincing conclusions of modern science compel every one to admit these kinds of unity. But while we admit unity in many things, we none the less must also explain the individuality and the apparent diversity which we cannot fail to trace everywhere. It was said of old “Give us a fulcrum and it will become easy to displace the earth.” So also we must say, “Give us something that is individualised, and the apparent diversity will be easily understood.” Otherwise, how could unity result in a multitude.

‘After a long and painstaking research, natural science has discovered the individualities of the chemical elements, and therefore it is now capable, not only of analysing, but also of synthesising; it can understand and grasp generality and unity, as well as the individualised and multifarious. The general and universal, like time and space, like force and motion, vary uniformly. The uniform admit of interpolations, revealing every intermediate phase; but the multitudinous, the individualised—such as ourselves, or the chemical elements, or the members of a peculiar periodic function of the elements, or Dalton's multiple proportions—is characterised in another way. We see in it—side by side with a general connecting principle—leaps, breaks of continuity, points which escape from the analysis of the infinitely small—an absence of complete intermediate links. Chemistry has found an answer to the question as to the causes of multitudes, and while retaining the conception of many elements, all submitted to the discipline of a general law, it offers an escape from the Indian Nirvana—the absorption in the universal—replacing it by the individualised. However, the place for individuality is so limited by the all-grasping, all-powerful universal, that it is merely a point of support for the understanding of multitude in unity.’

[28] It might be expected from the periodic law and analogies with the series iron, cobalt, nickel, copper, zinc, that the atomic weights of the elements of the series osmium, iridium, platinum, gold, mercury, would rise in this order, and at the time of the establishment of the periodic law (1869), the determinations of Berzelius, Rose, and others gave the following values for the atomic weights: Os = 200, Ir = 197, Pt = 198, Au = 196, Hg = 200. The fulfilment of the expectations of the periodic law was given in the first place by the fresh determinations (Seubert, Dittmar, and Arthur) of the atomic weight of platinum, which proved to be nearly 196, if O = 16 (as Marignac, Brauner, and others propose); in the second place, by the fact that Seubert proved that the atomic weight of osmium is really less than that of platinum, and approximately Os = 191; and, in the third place, by the fact that after the researches of KrÜss, Thorpe, and Laurie there was no doubt that the atomic weight of gold is greater than that of platinum—namely, nearly 197.

[28 bis] In Chapter XXII., Note 40, we gave the thermal data for certain of the compounds of copper of the type CuX2; we will now cite certain data for the cuprous compounds of the type CuX, which present an analogy to the corresponding compounds AgX and AuX, some of which were investigated by Thomsen in his classical work, ‘Thermochemische Untersuchungen’ (Vol. iii., 1883). The data are given in the same manner as in the above-mentioned note:

R = Cu Ag Au
R + Cl +33 +29 +6
R + Br +25 +23 0
R + I +16 +14 -6
R + O +41 +6 -?

Thus we see in the first place that gold, which possesses a much smaller affinity than Ag, evolves far less heat than an equivalent amount of copper, giving the same compound, and in the second place that the combination of copper with one atom of oxygen disengages more heat than its combination with one atom of a halogen, whilst with silver the reverse is the case. This is connected with the fact that Cu2O is more stable under the action of heat than Ag2O.

[29] Heavy atoms and molecules, although they may present many points of analogy, are more easily isolated; thus C16H32, although, like C2H4, it combines with Br2, and has a similar composition, yet reacts with much greater difficulty than C2H4, and in this it resembles gold; the heavy atoms and molecules are, so to say, inert, and already saturated by themselves. Gold in its higher grade of oxidation, Au2O3, presents feeble basic properties and weakly-developed acid properties, so that this oxide of gold, Au2O3, may be referred to the class of feeble acid oxides, like platinic oxide. This is not the case in the highest known oxides of copper and silver. But in the lower grade of oxidation, aurous oxide, Au2O, gold, like silver and copper, presents basic properties, although they are not very pronounced. In this respect it stands very close in its properties, although not in its types of combination (AuX and AuX3), to platinum (PtX2 and PtX4) and its analogues.

As yet the general chemical characteristics of gold and its compounds have not been fully investigated. This is partly due to the fact that very few researches have been undertaken on the compounds of this metal, owing to its inaccessibility for working in large quantities. As the atomic weight of gold is high (Au = 197), the preparation of its compounds requires that it should be taken in large quantities, which forms an obstacle to its being fully studied. Hence the facts concerning the history of this metal are rarely distinguished by that exactitude with which many facts have been established concerning other elements more accessible, and long known in use.

[29 bis] Sonstadt (1872) showed that sea water, besides silver, always contains gold. Munster (1892) showed that the water of the Norwegian fiords contains about 5 milligrams of gold per ton (or 5 milliardths)—i.e. a quantity deserving practical attention, and I think it may be already said that, considering the immeasurable amount of sea water, in time means will be discovered for profitably extracting gold from sea water by bringing it into contact with substances capable of depositing gold upon their surface. The first efforts might be made upon the extraction of salt from sea water, and as the total amount of sea water may be taken as about 2,000,000,000,000,000,000 tons, it follows that it contains about 10,000 million tons of gold. The yearly production of gold is about 200 tons for the whole world, of which about one quarter is extracted in Russia. It is supposed that gold is dissolved in sea water owing to the presence of iodides, which, under the action of animal organisms, yield free iodine. It is thought (as Professor Konovaloff mentions in his work upon ‘The Industries of the United States,’ 1894) that iodine facilitates the solution of the gold, and the organic matter its precipitation. These facts and considerations to a certain extent explain the distribution of gold in veins or rock fissures, chiefly filled with quartz, because there is sufficient reason for supposing that these rocks once formed the ocean bottom. R. Dentrie, and subsequently Wilkinson, showed that organic matter—for instance, cork—and pyrites are able to precipitate gold from its solutions in that metallic form and state in which it occurs in quartz veins, where (especially in the deeper parts of vein deposits) gold is frequently found on the surface of pyrites, chiefly arsenical pyrites. Kazantseff (in Ekaterinburg, 1891) even supposes, from the distribution of the gold in these pyrites, that it occurred in solution as a compound of sulphide of gold and sulphide of arsenic when it penetrated into the veins. It is from such considerations that the origin of vein and pyritic gold is, at the present time, attributed to the reaction of solutions of this metal, the remains of which are seen in the gold still present in sea water.

[30] However, in recent times, especially since about 1870, when chlorine (either as a solution of the gas or as bleaching powder) and bromine began to be applied to the extraction of finely-divided gold from poor ores (previously roasted in order to drive off arsenic and sulphur, and oxidise the iron), the extraction of gold from quartz and pyrites, by the wet method, increases from year to year, and begins to equal the amount extracted from alluvial deposits. Since the nineties the cyanide process (Chapter XIII., Note 13 bis) has taken an important place among the wet methods for extracting gold from its ores. It consists in pouring a dilute solution of cyanide of potassium (about 500 parts of water and 1 to 4 parts of cyanide of potassium per 1,000 parts of ore, the amount of cyanide depending upon the richness of the ore) and a mixture of it with NaCN, (see Chapter XIII., Note 12) over the crushed ore (which need not be roasted, whilst roasting is indispensable in the chlorination process, as otherwise the chlorine is used up in oxidising the sulphur, arsenic, &c.) The gold is dissolved very rapidly even from pyrites, where it generally occurs on the surface in such fine and adherent particles that it either cannot be mechanically washed away, or, more frequently is carried away by the stream of water, and cannot be caught by mechanical means or by the mercury used for catching the gold in the sluices. Chlorination had already given the possibility of extracting the finest particles of gold; but the cyanide process enables such pyrites to be treated as could be scarcely worked by other means. The treatment of the crushed ore by the KCN is carried on in simple wooden vats (coated with paraffin or tar) with the greatest possible rapidity (in order that the KCN solution should not have time to change) by a method of systematic lixiviation, and is completed in 10 to 12 hours. The resultant solution of gold, containing AuK(CN)2, is decomposed either with freshly-made zinc filings (but when the gold settles on the Zn, the cyanide solution reacts upon the Zn with the evolution of H2 and formation of ZnH2O2) or by sodium amalgam prepared at the moment of reaction by the action of an electric current upon a solution of NaHO poured into a vessel partially immersed in mercury (the NaCN is renewed continually by this means). The silver in the ore passes into solution, together with the gold, as in amalgamation.

[31] But the particles of gold are sometimes so small that a large amount is lost during the washing. It is then profitable to have recourse to the extraction by chlorine and KCN (Note 30).

In speaking of the extraction of gold the following remarks may not be out of place:

In California advantage is taken of water supplied from high altitudes in order to have a powerful head of water, with which the rocks are directly washed away, thus avoiding the greater portion of the mechanical labour required for the exploitation of these deposits.

The last residues of gold are sometimes extracted from sand by washing them with mercury, which dissolves the gold. The sand mixed with water is caused to come into contact with mercury during the washing. The mercury is then distilled.

Many sulphurous ores, even pyrites, contain a small amount of gold. Compounds of gold with bismuth, BiAu2, tellurium, AuTe2 (calverite), &c., have been found, although rarely.

Among the minerals which accompany gold, and from which the presence of gold may be expected, we may mention white quartz, titanic and magnetic iron ores, and also the following, which are of rarer occurrence: zircon, topaz, garnet, and such like. The concentrated gold washings first undergo a mechanical treatment, and the impure gold obtained is treated for pure gold by various methods. If the gold contain a considerable amount of foreign metals, especially lead and copper, it is sometimes cupelled, like silver, so that the oxidisable metals may be absorbed by the cupel in the form of oxides, but in every case the gold is obtained together with silver, because the latter metal also is not oxidised. Sometimes the gold is extracted by means of mercury, that is, by amalgamation (and the mercury subsequently driven off by distillation), or by smelting it with lead (which is afterwards removed by oxidation) and processes like those employed for the extraction of silver, because gold, like silver, does not oxidise, is dissolved by lead and mercury, and is non-volatile. If copper or any other metal contain gold and it be employed as an anode, pure copper will be deposited upon the cathode, while all the gold will remain at the anode as a slime. This method often amply repays the whole cost of the process, since it gives, besides the gold, a pure electrolytic copper.

[31 bis] SchottlÄnder (1893) obtained gold in a soluble colloid form (the solution is violet) by the action of a mixture of solutions of cerium acetate and NaHO upon a solution of AuCl3. The gold separates out from such a solution in exactly the same manner as Ag does from the solution of colloid silver mentioned above. There always remains a certain amount of a higher oxide of cerium, CeO2, in the solution—i.e. the gold is reduced by converting the cerium into a higher grade of oxidation. Besides which KrÜss and Hofmann showed that sulphide of gold precipitated by the action of H2S upon a solution of AuKCy2 mixed with HCl easily passes into a colloid solution after being properly washed (like As2S3, CuS, &c., Chapter I., Note 57).

[31 tri] Gold-leaf is used for gilding wood (leather, cardboard, and suchlike, upon which it is glued by means of varnish, &c.), and is about 0·003 millimetre thick. It is obtained from thin sheets (weighing at first about ¼ grm. to a square inch), rolled between gold rollers, by gradually hammering them (in packets of a number at once) between sheets of moist (but not wet) parchment, and then, after cutting them into four pieces, between a specially prepared membrane, which, when at the right degree of moisture, does not tear or stick together under the blows of the hammer.

[32] The formation of the alloys Cu + Zn, Cu + Sn, Cu + Bi, Cu + Sb, Pb + Sb, Ag + Pb, Ag + Sn, Au + Zn, Au + Sn, &c., is accompanied by a contraction (and evolution of heat). The formation of the alloys Fe + Sb, Fe + Pb, Cu + Pb, Pb + Sn, Pb + Sb, Zn + Sb, Ag + Cu, Au + Cu, Au + Pb, takes place with a certain increase in volume. With regard to the alloys of gold, it may be mentioned that gold is only slightly dissolved by mercury (about 0·06 p.c., Dudley, 1890); the remaining portion forms a granular alloy, whose composition has not been definitely determined. Aluminium (and silicon) also have the capacity of forming alloys with gold. The presence of a small amount of aluminium lowers the melting point of gold considerably (Roberts-Austen, 1892); thus the addition of 4 p.c. of aluminium lowers it by 14°·28, the addition of 10 p.c. Al by 41°·7. The latter alloy is white. The alloy AuAl2 has a characteristic purple colour, and its melting point is 32°·5 above that of gold, which shows it to be a definite compound of the two metals. The melting points of alloys richer in Al gradually fall to 660°—that is, below that of aluminium (665°).

Heycock and Neville (1892), in studying the triple alloys of Au, Cd, and Sn, observed a tendency in the gold to give compounds with Cd, and by sealing a mixture of Au and Cd in a tube, from which the air had been exhausted, and heating it, they obtained a grey crystalline brittle definite alloy AuCd.

[32 bis] Calderon (1892), at the request of some jewellers, investigated the cause of a peculiar alteration sometimes found on the surface of dead-gold articles, there appearing brownish and blackish spots, which widen and alter their form in course of time. He came to the conclusion that these spots are due to the appearance and development of peculiar micro-organisms (Aspergillus niger and Micrococcus cimbareus) on the gold, spores of which were found in abundance on the cotton-wool in which the gold articles had been kept.

[33] Stannous chloride as a reducing agent also acts on auric chloride, and gives a red precipitate known as purple of Cassius. This substance, which probably contains a mixture or compound of aurous oxide and tin oxide, is used as a red pigment for china and glass. Oxalic acid, on heating, reduces metallic gold from its salts, and this property may be taken advantage of for separating it from its solutions. The oxidation which then takes place in the presence of water may be expressed by the following equation: 2AuCl3 + 3C2H2O4 = 2Au + 6HCl + 6CO2. Nearly all organic substances have a reducing action on gold, and solutions of gold leave a violet stain on the skin.

Auric chloride, like platinic chloride, is distinguished for its clearly-developed property of forming double salts. These double salts, as a rule, belong to the type AuMCl4. The compound of auric chloride with hydrochloric acid mentioned above evidently belongs to the same type. The compounds 2KAuCl4,5H2O, NaAuCl4,2H2O, AuNH4Cl4,H2O, Mg(AuCl4)2,2H2O, and the like are easily crystallised in well-formed crystals. Wells, Wheeler, and Penfield (1892) obtained RbAuCl4 (reddish yellow) and CsAuCl4 (golden yellow), and corresponding bromides (dark coloured). AuBr3 is extremely like the chloride. Auric cyanide is obtained easily in the form of a double salt of potassium, KAu(CN)4 by mixing saturated and hot solutions of potassium cyanide with auric chloride and then cooling.

[34] If ammonia be added to a solution of auric chloride, it forms a yellow precipitate of the so-called fulminating gold, which contains gold, chlorine, hydrogen, nitrogen, and oxygen, but its formula is not known with certainty. It is probably a sort of ammonio-metallic compound, Au2O3,4NH3, or amide (like the mercury compound). This precipitate explodes at 140°, but when left in the presence of solutions containing ammonia it loses all its chlorine and becomes non-explosive. In this form the composition Au2O3,2NH3,H2O is ascribed to it, but this is uncertain. Auric sulphide, Au2S3, is obtained by the action of hydrogen sulphide on a solution of auric chloride, and also directly by fusing sulphur with gold. It has an acid character, and therefore dissolves in sodium and ammonium sulphides.

[35] Many double salts of suboxide of gold belong to the type AuX—for instance, the cyanide corresponding to the type AuKX2, like PtK2X4, with which we became acquainted in the last chapter. We will enumerate several of the representatives of this class of compounds. If auric chloride, AuCl3, be mixed with a solution of sodium thiosulphate, the gold passes into a colourless solution, which deposits colourless crystals, containing a double thiosulphate of gold and sodium, which are easily soluble in water but are precipitated by alcohol. The composition of this salt is Na3Au(S2O3)2,2H2O. If the sodium thiosulphate be represented as NaS2O3Na, the double salt in question will be AuNa(S2O3Na)2,2H2O, according to the type AuNaX2. The solution of this colourless and easily crystallisable salt has a sweet taste, and the gold is not separated from it either by ferrous sulphate or oxalic acid. This salt, which is known as Fordos and Gelis's salt, is used in medicine and photography. In general, aurous oxide exhibits a distinct inclination to the formation of similar double salts, as we saw also with PtX2—for example, it forms similar salts with sulphurous acid. Thus if a solution of sodium sulphite be gradually added to a solution of oxide of gold in sodium hydroxide, the precipitate at first formed re-dissolves to a colourless solution, which contains the double salt Na3Au(SO3)2 = AuNa(SO3Na)2. The solution of this salt, when mixed with barium chloride, first forms a precipitate of barium sulphite, and then a red barium double salt which corresponds with the above sodium salt.

The oxygen compound of the type AuX, aurous oxide, Au2O, is obtained as a greenish violet powder on mixing aurous chloride with potassium chloride in the cold. With hydrochloric acid this oxide gives gold and auric chloride, and when heated it easily splits up into oxygen and metallic gold.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page