These three metals give, like magnesium, oxides RO, which form feebly energetic bases, and like magnesium they are volatile. The volatility increases with the atomic weight. Magnesium can be distilled at a white heat, zinc at a temperature of about 930°, cadmium about 770°, and mercury about 351°. Their oxides, RO, are more easily reducible than magnesia, and mercuric oxide is the most easily reducible. The properties of their salts RX2 are very similar to the properties of MgX2. Their solubility, power of forming double and basic salts, and many other qualities are in many respects identical with those of MgX2. The greater or less ease with which they are oxidised, the instability of their compounds, the density of the metals and their compounds, their scarcity in nature, and many other properties gradually change with the increase of atomic weight, as might be expected from the periodicity of the elements. Their principal characteristics, as contrasted with magnesium, find a general expression in the fact that zinc, cadmium, and mercury are heavy metals. Zinc stands nearest to magnesium in atomic weight and in properties. Thus zinc sulphate, or white vitriol, easily crystallises with seven molecules of water, ZnSO4,7H2O. It is isomorphous with Epsom salts, and parts with difficulty with the last molecule of water; it forms double salts—for instance, ZnK2(SO4)2,6H2O—exactly as magnesium sulphate does. Zinc, like many heavy metals, is often found in nature in combination see caption Fig. 80.—Distillation of zinc in a crucible placed in a furnace. o c, tube along which the vapour passes and condenses. Metallic zinc (spelter) is most frequently obtained from the ores containing the carbonate The reduction of metallic zinc from its ores is based on the fact that zinc oxide Commercial zinc is generally impure, containing a mixture of lead, particles of carbon, iron, and other metals carried over with the vapours, although they are not volatile at a temperature approaching 1000°. If it be required to obtain pure zinc from the commercial article, it is subjected to a further distillation in a crucible with a pipe passing through the bottom, the vapours formed by the heated zinc only having exit through the pipe cemented into the bottom of the crucible. Passing through this pipe, the vapours condense to a liquid, which is collected in a receiver. Zinc thus purified is generally re-melted and cast into rods, and in this form is often used for physical and chemical researches where a pure article is required. Metallic zinc has a bluish-white colour; its lustre, compared with many other metals, is insignificant. When cast it exhibits a crystalline structure. Its specific gravity is about 7—that is, varies from 6·8 to 7·2, according to the degree of compression (by forging, rolling, &c.) to which it has been subjected. It is very ductile, considering its hardness. For this reason it chokes up files when being worked. Its malleability is considerable when pure, but in the ordinary impure condition in which it is sold, it is impossible to roll it at the ordinary temperature, as it easily breaks. At a temperature of 100°, however, it easily undergoes such operations, and can then be drawn into wire or rolled into sheets. If heated further it again becomes brittle, and at 200° may be even crushed into powder, so completely does it lose its molecular cohesion. It melts at 418°, and distils at 930°. Zinc does not undergo any change in the atmosphere. Even in very damp air it only becomes slowly coated with a very thin white coating of oxide. For this reason it is available for all objects which are only in contact with air. Therefore sheet zinc may be used for roofing and many other purposes. In this respect the action of zinc varies a great deal with the degree of its purity. Weak sulphuric acid (corresponding with the composition H2SO4,8H2O) at the ordinary temperature does not act at all on chemically pure zinc, and even a stronger solution acts very slowly. If the temperature be raised, and particularly if the zinc be previously slightly heated, so as to cover the surface with a film of oxide, chemically pure zinc acts on sulphuric acid. Thus, for example, one cubic centimetre of zinc in sulphuric acid having a composition The action of zinc on acids, and the consequent formation of zinc Finely divided zinc, or zinc dust, obtained in the distillation of the metal when the receiver is not heated up to the melting point, on account of its presenting a large surface of contact and containing foreign matter (particularly zinc oxide), has in the highest degree the property of decomposing acids, and even water, which it easily decomposes, particularly if slightly heated. On this account zinc dust is often used in laboratories and factories as a reducing agent. A similar influence of the finely divided state is also noticed in other metals—for instance, copper and silver—which again shows the close connection between chemical and physico-mechanical phenomena. We must first of all turn to this close connection for an explanation of the widely spread application of zinc in galvanic batteries, where the chemical (latent, potential) energy of the acting substances is transformed into (evident, kinetic) galvanic energy, and through this latter into heat, light, or mechanical work. Hermann and Stromeyer, in 1819, showed that cadmium is almost always found with zinc, and in many respects resembles it. When distilled the cadmium volatilises sooner, because it has a lower boiling point. Sometimes the zinc dust obtained by the first distillation of zinc contains as much as 5 per cent. of cadmium. When zinc blende, containing cadmium, is roasted, the zinc passes into the state of oxide, and the cadmium sulphide in the ore oxidises into cadmium sulphate, CdSO4, which resists tolerably well the action of heat; therefore if roasted zinc blende be washed with water, a solution of cadmium sulphate will be obtained, from which it is very easy to prepare metallic cadmium. Hydrogen sulphide may be used for separating cadmium from its solutions; it gives a yellow precipitate of cadmium sulphide, CdS (according to the equation CdSO4 + H2S = H2SO4 + CdS), Cadmium is a white metal, and when freshly cut is almost as white and lustrous as tin. It is so soft that it may be easily cut with a knife, and so malleable that it can be easily drawn into wire, rolled into sheets, &c. Its specific gravity is 8·67, melting point 320°, boiling point 770°; its vapours burn, forming a brown powder of the oxide. Mercury resembles zinc and cadmium in many respects, but presents that distinction from them which is always noticed in all the heaviest metals (with regard to atomic weight and density) compared with the lighter ones—namely, that it oxidises with more difficulty, and its compounds are more easily decomposed. Mercury is found in nature almost exclusively in combination with sulphur (like zinc and cadmium, but is still rarer than them) in the form known as cinnabar, HgS (Chapter XX., Note 29). It is far more rarely met with in the native or metallic condition, and this in all probability has been derived from cinnabar. Mercury ore is found only in a few places—namely, in Spain (in Almaden), in Idria, Japan, Peru, and California. About the year 1880 Minenkoff discovered a rich bed of cinnabar in the Bahmout district (near the station of Nikitovka), in the Government of Ekaterinoslav, so that now Russia even exports mercury to other countries. Cinnabar is now being worked in Daghestan in the Caucasus. Mercury ores are easily reduced to metallic mercury, because the combination between the metal and the sulphur is one of but little stability. Oxygen, iron, lime, and many other substances, when heated, easily destroy the combination. If iron is heated with cinnabar, iron sulphide is formed; if cinnabar is heated with lime, mercury and calcium sulphide and sulphate are formed, 4HgS + 4CaO = 4Hg + 3CaS + CaSO4. On being heated in the air, or roasted, the sulphur burns, oxidises, forming sulphurous anhydride, and vapours of metallic mercury are formed. Mercury is more easily distilled than all other metals, its boiling point being about 351°, and therefore its separation from natural admixtures, decomposed by one of the above-mentioned methods, is effected at the expense of a comparatively small amount of heat. The mixture of mercury vapour, air, and products of combustion obtained is cooled in tubes (by water or air), and the mercury condenses as liquid metal. Mercury, as everybody knows, is a liquid metal at the ordinary temperature. In its lustre and whiteness it resembles silver. As many of the compounds of mercury decompose on being heated—for instance, the oxide or carbonate The lowest oxygen compound of mercury—that is, mercurous oxide, Hg2O—does not seem to exist, for the substance precipitated in the form of a black mass by the action of alkalis on a solution of mercurous salts gradually separates on keeping into the yellow mercuric oxide and metallic mercury, as does also a simple mechanical mixture of oxide, HgO, with mercury (Guibourt, Barfoed). The other compound of mercury with oxygen is already known to us as mercuric oxide, HgO, obtained in the form of a red crystalline substance by the oxidation of mercury in the air, and precipitated as a yellow powder by the action of sodium hydroxide on solutions of salts of the type HgX2. In this case it is amorphous and more amenable to the action of various reagents (Chap. XI., Note 32) than when it is in the crystalline state. Indeed, on trituration, the red oxide is changed into a powder of a yellow colour. It is very sparingly soluble in water, and forms an alkaline solution which precipitates magnesia from the solution of its salts. Mercury combines directly with chlorine, and the first product of combination is calomel or mercurous chloride, Hg2Cl2. This is obtained, as above stated, in the form of a white precipitate by mixing solutions Mercury has a remarkable power of forming very unstable compounds with ammonia, in which the mercury replaces the hydrogen, and, if a mercuric compound be taken, its atom occupies the place of two atoms of the hydrogen in the ammonia. Thus Plantamour and Hirtzel showed that precipitated mercuric oxide dried at a gentle heat, when continuously heated (up to 100°-150°) in a stream of Mercury as a liquid metal is capable of dissolving other metals and forming metallic solutions. These are generally called ‘amalgams.’ The formation of these solutions is often accompanied by the development of a large amount of heat—for instance, when potassium and sodium are dissolved (Chapter XII., Note 39); but sometimes heat is absorbed, as, for instance, when lead is dissolved. It is evident that phenomena of this kind are exceedingly similar to the phenomena accompanying the dissolution of salts and other substances in water, but here it is easy to demonstrate that which is far more difficult to observe in the case of salts: the solution of metals in mercury is accompanied by the formation of definite chemical compounds of the mercury with the metals dissolved. This is shown by the fact that when pressed (best of all in chamois leather) such solutions leave solid, definite compounds of mercury with metals. It is, however, very difficult to obtain them in a pure state, on account of the difficulty of separating the last traces of mercury, which is mechanically distributed between the crystals of the compounds. Nevertheless, in many cases such compounds have undoubtedly been obtained, and their existence is clearly shown by the evident crystalline structure and characteristic appearance of many amalgams. Thus, for instance, if about 2½ p.c. of sodium be dissolved in mercury, a hard, crystalline amalgam is obtained, very friable and little changeable in air. It contains the compound NaHg5 (Chapter XII., Note 39). Water decomposes it, with the evolution of hydrogen, but more slowly than other sodium amalgams, and this action of water only shows that the bond between the sodium and the mercury is weak, just like the connection between mercury and many other elements—for instance, nitrogen. Mercury directly and easily dissolves potassium, sodium, zinc, cadmium, tin, gold, bismuth, lead, &c., and from such solutions or alloys it is in most cases easy to extract definite compounds—thus, for instance, the compounds of mercury and silver have the compositions HgAg and Ag2Hg3. Objects made of copper when rubbed with mercury become covered with a white coating of that metal, which slowly forms an amalgam; silver acts in the same way, but more slowly, and platinum combines with mercury with still greater difficulty. This metal only readily forms an amalgam when in the form of a fine powder. If salts of platinum in solution are poured on to an amalgam of sodium, the latter element reduces the platinum, and the platinum separated is dissolved by the mercury. Almost all metals readily form amalgams if their solutions are decomposed by a galvanic current, where mercury forms the negative pole. In this way an amalgam may even be made with iron, although iron in a mass does not dissolve in Footnotes: An admixture of iron is often found in ordinary sulphate of zinc in the form of ferrous sulphate, FeSO4, isomorphous with the zinc sulphate. In order to separate it, chlorine is passed through the solution of the impure salt (when the ferrous salt is converted into ferric), the solution is then boiled, and zinc oxide is afterwards added, which, after some time has elapsed, precipitates all the ferric oxide. Ferric oxide of the form R2O3 is displaced by zinc oxide of the form RO. The specific gravity of solutions containing p per cent. of zinc chloride, ZnCl2, is as follows:
The last line shows the change of specific gravity for 1° in ten-thousandth parts for temperatures near 15°. More accurate determinations of Cheltzoff, personally communicated by him, led him to conclude that solutions of zinc chloride follow the same laws as the solutions of sulphuric acid, which will be considered in Chapter XX.: (1) from H2O to ZnCl2,120H2O s = S0 + 92·85p + 0·1748p2; (2) from thence to ZnCl2,40H2O s = S0 + 93·96p - 0·0126p2; (3) thence to ZnCl2,25H2O s = 11481·5 + 96·45(p - 15·89) + 0·4567(p - 15·89)2; (4) thence to ZnCl2,10H2O s = 12212·1 + 104·82(p - 23·21) + 0·7992(p - 23·21)2; (5) thence to p = 65 p.c. s = 14606·3 + 140·96(p - 43·05) + 1·4905(p - 43·05)2, where s is the specific gravity of the solution at 15°, containing p p.c. of ZnCl2 by weight, taking water at 4° = 10000, and where S0 = 9991·6 (specific gravity of water at 15°). The compound of zinc chloride with hydrochloric acid has been mentioned in Vol. I. Chapter X. Zinc chloride has a great affinity for water; it is not only soluble in it, but in alcohol, and on being dissolved in water becomes considerably heated, like magnesium and calcium chlorides. Zinc chloride is capable of taking up water, not only in a free state, but also in chemical combination with many substances. Thus, for instance, it is used in organic researches for removing the elements of water from many of the organic compounds. Calvert and Johnson made the following series of observations on the action of sulphuric acid of various degrees of concentration on 2 grams of pure zinc during two hours. In the cold the concentrated acid, H2SO4, does not act, H2SO4,2H2O dissolves about 0·002 gram, but principally forms hydrogen sulphide, which is obtained also when the dilution reaches H2SO4,7H2O, when 0·035 gram of zinc is dissolved. When largely diluted with water, pure hydrogen begins to be disengaged. H2SO4,2H2O at 130° gives a mixture of hydrogen sulphide and sulphurous anhydride dissolving 0·156 gram of zinc. Bouchardat showed that if in a vessel made of glass or sulphur dilute sulphuric acid acting on a piece of zinc liberates one part of hydrogen, then the same acid with the same piece of zinc in the same time will liberate 4 parts of hydrogen if the vessel be made of tin—that is, zinc forms a galvanic couple with tin; in a leaden vessel 9 parts of hydrogen are set free, with a vessel of antimony or bismuth 13 parts, silver or platinum 38 parts, copper 50 parts, iron 43 parts. If a salt of platinum be added to the dilute sulphuric acid (1 part of acid and 12 parts of water), Millon determined that the rapidity of the action on the zinc is increased 149 times, and by the addition of copper sulphate is rendered 45 times greater than the action of pure sulphuric acid. The salts which are added are reduced to metals by the zinc, their contact serving to promote the reaction because they form local galvanic currents. According to the observations of Cailletet, if, at the ordinary pressure, sulphuric acid with zinc liberates 100 parts of hydrogen, then with a pressure of 60 atmospheres 47 parts will be liberated and 1 part at a pressure of 120 atmospheres. With a reduced pressure under the receiver of an air-pump 168 parts are liberated. Helmholtz showed that a reduced pressure also exercises its influence on galvanic elements. Debray, LÖwel, and others showed that zinc liberates hydrogen and forms basic salts and zinc oxide with solutions of many salts—for instance, MCln, aluminium sulphate, and alum, Sodium and potassium carbonates scarcely act, because they form carbonates. The salts of ammonia act more strongly than the salts of potassium and sodium; the zinc remains bright. It is evident that this action is founded on the formation of double salts and basic salts. The variation with concentration in the rate of the action of sulphuric acid on zinc (containing impurities) under otherwise uniform conditions is in evident connection with the electrical conductivity of the solution and its viscosity, although, when largely diluted, the action is almost proportional to the amount of acid in a known volume of the solution. Forging, casting the molten metal, and similar mechanical influences change the density and hardness of zinc, and also strongly influence its power of liberating hydrogen from acids. Kayander showed (1881) that when magnesium is submitted to the action of acids: (a) the action depends, not on the nature of the acid, but on its basicity; (b) the increase of the action is more rapid than the growth of the concentration; and (c) there is a decrease of action with the increase of the coefficient of internal friction and electrical conductivity. Spring and Aubel (1887) measured the volume of hydrogen disengaged by an alloy of zinc and a small quantity of lead (0·6 p.c.), because the action of acids is then uniform. In order to deal with a known surface, spheres were taken (9·5 millimetres diameter) and cylinders (17 mm. dia.), the sides of which were covered with wax in order to limit the action to the end surfaces. During the commencement of the action of a definite quantity of acid the rapidity increases, attains a maximum, and then declines as the acid becomes exhausted. The results for 5, 10, and 15 per cent. of hydrochloric acid are given below. H denotes the number of cubic centimetres of hydrogen, D the time in seconds elapsing after the zinc spheres have been plunged into the acid. At 15° were obtained:
In consequence of the complex character of the phenomenon, the authors themselves do not consider their determinations as being conclusive, and only give them a relative significance; and in this connection it is remarkable that hydrobromic acid under similar conditions (with an equivalent strength) gives a greater (from 2 to 5 times) rapidity of action than hydrochloric acid, but sulphuric acid a far smaller velocity (nearly 25 times smaller). It is also remarkable that during the reaction the metal becomes much more heated than the acid. It may be mentioned that zinc dust and zinc itself, when heated with hydrated lime and similar hydrates, disengages hydrogen: this method has even been proposed for obtaining hydrogen for filling war balloons. Cadmium oxide is soluble, although sparingly, in alkalis, but in the presence of tartaric and certain other acids the alkaline solution of cadmium oxide does not change when boiled, whilst a diluted solution in that case deposits cadmium oxide: this may also serve for separating zinc compounds from those of cadmium. Cadmium is precipitated from its salts by zinc, which fact may also be taken advantage of for separating cadmium; for this reason, in an alloy of zinc and cadmium, acids first of all extract the zinc. Cadmium is in all respects less energetic than zinc. Thus, for instance, it decomposes water with difficulty, and this only when strongly heated. It even acts but slowly on acids, but then displaces hydrogen from them. It is necessary here to call attention to the fact that for alkali and alkaline earthy metals (of the even series) the highest atomic weight determines the greatest energy; but cadmium (of the uneven series), whilst having a larger atomic weight than zinc, is less energetic. The salts of cadmium are colourless, like those of zinc. De Schulten obtained a crystalline oxychloride, Cd(OH)Cl by heating marble with a solution of cadmium chloride in a sealed tube at 200°.
Eventually we shall see the near relation of platinum, palladium, and nickel, and also of gold, silver, and copper, but we will now point out the parallelism between these three groups. The relation between the physical and also chemical properties is here strikingly similar. Nickel, palladium, and platinum are very difficult to fuse (far more so than iron, ruthenium, and osmium, which stand before them). Copper, silver, and gold melt far more easily in a strong heat than the three preceding metals, and zinc, cadmium, and mercury melt still more easily. Nickel, palladium, and platinum are very slightly volatile; copper, silver, and gold are more volatile; and zinc, cadmium, and mercury are among the most volatile metals. Zinc oxidises more easily than copper, and is reduced with more difficulty, and the same is true for mercury as compared with gold. These properties for cadmium and silver are intermediate in the respective groups. Relations of this kind clearly show the nature of the periodic law.
—that is, the relative amount of free acid decreases as the strength of the solution increases.
or else are produced directly from the normal salt and the oxide or its hydroxide. Thus mercurous nitrate, when treated with water, forms basic salts of the composition 6(HgNO3),Hg2O,H2O, 2(HgNO3),Hg2O,H2O, and 3(HgNO3),Hg2O,H2O, the first two of which crystallise well. Naturally it is possible either to refer similar salts to the type of hydrates—for instance, the second salt to the hydrate N2O5,4H2O—or to view it as a compound, HgNO3,HgHO, but our present knowledge of basic salts is not sufficiently complete to admit of generalisations. However, it is already possible to view the subject in the following aspects: (1) basic salts are principally formed from feeble bases; (2) certain metals (mentioned above) form them with particular ease, so that one of the causes of the formation of many basic salts must depend on the property of the metal itself; (3) those bases which readily form basic salts as a rule also readily form double salts; (4) in the formation of basic salts, as also everywhere in chemistry, where sufficient facts have accumulated, we clearly see the conditions of equally balanced heterogeneous systems, such as we saw, for instance, in the formation of double salts, crystallo-hydrates, &c. The mercuric salts often form double salts (confirming the third thesis), and mercuric chloride easily combines with ammonia, forming Hg(NH4)2Cl4, or in general HgCl2nMCl. If a mixture of mercurous and potassium sulphates be dissolved in dilute sulphuric acid, the solution easily yields large colourless crystals of a double salt of the composition K2SO4,3HgSO4,2H2O. Boullay obtained crystalline compounds of mercuric chloride with hydrochloric acid, and mercuric iodide with hydriodic acid; and Thomsen describes the compound HgBr2,HBr,4H2O as a well-crystallised salt, melting at 13°, and having, in a molten state, a specific gravity 3·17 and a high index of refraction. Moreover, the capacity of salts for forming basic compounds has been considerably cleared up since the investigation (by WÜrtz, Lorenz, and others) of glycol, C2H4(OH)2 (and of polyatomic alcohols resembling it), because the ethers C2H4X2, corresponding with it, are capable of forming compounds containing C2H4X2nC2H4O. On the other hand, there is reason to think that the property of forming basic salts is connected with the polymerisation of bases, especially colloidal ones (see the chapter on Silica, Lead Salts, and Tungstic Acid). Wells (1889) and Vare obtained and investigated many such double salts, and showed the possibility of the formation, not only of HgCl2MCl and HgCl22MCl where M is a metal of the alkalis—for example, Cs—but also of HgCl23MCl,2(HgCl2)MCl, and in general nHgX2mMX, where X stands for various haloids. The investigations of Abel on the communication of explosion from one substance to another are remarkable. If guncotton be ignited in an open space, it burns quietly; but if fulminating mercury be exploded by the side of it, the decomposition of the guncotton is effected instantaneously, and it then shatters the objects upon which it lies, so rapid is the decomposition. Abel explains this by supposing that the explosion of the fulminating salt brings the molecules of guncotton into a uniform or as it were harmonious state of vibration, which causes the rapid decomposition of the whole mass. This rapid decomposition of explosive substances defines the distinction between explosion and combustion. Besides this, Berthelot showed that from that form of powerful molecular concussion which takes place during the explosion of fulminating mercury, the state of strain and stability of equilibrium of substances which are endothermal, or capable of decomposing with the disengagement of heat—for instance, cyanogen, nitro compounds, nitrous oxide, &c.—is generally destroyed. Thorpe showed that carbon bisulphide, CS2, also an endothermal substance, decomposes into sulphur and charcoal, when fulminating mercury is exploded in contact with it. We may further remark that in the series Mg, Zn, Cd, and Hg the capacity to form double salts of diverse composition increases with the atomic weight. Thus, according to Wells and Walden's observations (1893), the ratio n : m for the type nMClmRCl2 (M = K, Li, Na … R = Mg, Zn …) is for Mg 1 : 1, for Zn 3 : 1, 2 : 1, and 1 : 1; for Cd, besides this, salts are known with the ratio 4 : 1, and for Hg 3 : 1, 2 : 1, 1 : 1, 2 : 3, 1 : 2, and 1 : 5. Amongst the metals accompanying zinc which have been named, but not authentically separated, must be included the actinium of Phipson (1881). He remarked that certain sorts of zinc give a white precipitate of zinc sulphide which blackens on exposure to light and then becomes white in the dark again. Its oxide, closely resembling in many ways cadmium oxide, is insoluble in alkalis, and it forms a white metallic sulphide, blackening on exposure to light. As no further mention has been made of it since 1882, its existence must be regarded as doubtful. |