OUR BOY FRIEND AND THE SCIENTIST LOOK OVER THE FIELD OF GASOLINE ENGINES AND SEE SOME BIG IMPROVEMENTS OVER THOSE OF A FEW YEARS AGO WHILE we are following the conversations of the scientist and his young friend about new inventions, we must not overlook some of their most interesting times in keeping abreast of the vast improvements that are being made every year—almost every day—in the inventions of a dozen years ago. For instance, there is the gas engine. Ten years ago it was a very imperfect machine, as every boy who has heard the old jokes about "auto-go-but doesn't," "get a horse," etc., will remember. Then there is the wireless telegraph. No invention of recent years has shown a more remarkable development than that of Guglielmo Marconi for sending messages without wires. But these are only a few of the things that the two friends talked about. They looked into the wonderful advancement in the art of photography First, let us see a few of the ways the gas engine has been improved, for we are all more or less familiar with it in automobiles, motor boats, or the hundred and one other places that it has become an invaluable aid to man in carrying on the world's work. Our young friend brought up the subject one day when he asked the scientist for a few pointers on getting better results with his motor-boat engine. "We will look it over together," said the man. "Of course you know that every gasoline engine has its own peculiarities, and crankinesses, so it's hard to tell just what's the matter with one until you see it. I don't know very much about them; I wish I knew more, but I have been talking with my automobile friends a good deal lately about the new motor invented by Charles Y. Knight." "Oh, I know," replied the boy, "it is called the 'Silent Knight' motor because it doesn't make any noise, and it is used on a great many high-priced automobiles." "That's it. If you like we will go and have one of these engines explained to us. At any rate the The expedition was made shortly after the conversation. "You understand, of course," said the scientist on the way, "that the Knight motor represents only one of the many, many improvements in the gas engine, but it is what we call a fundamental improvement, as it is a development in the main idea of the gasoline motor, rather than merely an improvement of one of the parts. Most of the evolution of gas engines has consisted merely of the improvement and perfection of the various parts for more power, and more all around efficiency. "You remember what you found out about gasoline motors in general when we were spending so much time talking about aeroplanes. The high speed motor, as we know it now, was invented, you know, by Gottlieb Daimler, a German inventor, in 1885, and with the ordinary four-cycle engine it takes four trips, or two round trips of the piston rod, to exert one push on the crankshaft of the engine. In other words, the explosion drives down the piston giving the power, and on its return trip the piston forces out the burned fumes. On the next downward stroke the fresh vapour is sucked into the cylinder and on the fourth trip, or second upward trip, the gas is compressed for the explosion. The carbureter on your motor-boat engine, and all others, as you know, is the device that mixes the gasoline "In the old gas engines the ignition was derived from a few dry-cell batteries and some sort of a transformer coil, whereas nowadays the magneto takes care of this work. As you know there are many kinds of magnetos, and inventors have spent years working out better and better ones. Also, in the old style motors the carbureter was more or less of a makeshift, with a drip feed arrangement, and a hand regulating shutter for admitting the air. Now a special automatic device regulates this, so that it is no longer a toss up whether the gas is mixed in the proper quantities or not. Then, too, the oiling systems have been improved, so that the function is done automatically. In short, the motor has been made a perfectly reliable servant instead of a very capricious plaything. "All these improvements made no fundamental change in the valves through which the gas was admitted to the cylinders, and the exhausted vapours expelled—and from your own experience you know that you are just about as apt to have trouble with your valves as with any other part of your machine. "It is in these valves that the Knight motor departs from the usual style, and by this it eliminates As they looked over the engine, an expert in gasoline motors explained all the parts of the "Silent Knight" and showed the scientist and his boy friend just how the machine worked. He said that the only big difference between the Knight motor and other standard makes of engines is that the Knight substitutes for the intake and exhaust valves an entirely new device composed of two cylinders, one within the other, sliding upon each other so as to regulate the flow of gas and the exhaust of fumes. Early in his career as an inventor, while living in his home city of Chicago, Knight decided that gasoline engines had entirely too many parts—that they were too complicated—and he set about trying to simplify them. For one thing, he made a careful study of valves, and collected a specimen of every kind known to mechanics. The sliding locomotive valve seemed to him to hold the greatest possibilities for his work, and he began a series of experiments with sliding valves until he finally brought out his first engine in 1902. Strange as it may seem, Knight's work was not recognized in his own country until after he had gone to Europe, where his engine was taken up by some of the biggest automobile manufacturers of England, France, Germany, Belgium, and Italy. After that The motor expert went on to explain that the advantage of the Knight motor lay in the fact that the two sleeves or cylinders, which go to make up the combustion chamber or engine cylinder, sliding up and down upon one another, give a silent, vibrationless movement, as against the noisy action of the old style poppet or spring valve motors. "But," interrupted the boy, "there are lots of other engines that run without making a noise nowadays." "That is true," the man answered, "but most of them run quietly only when at low speed, or stationary. When they begin to hit the high places the noise of the poppet valves is very noticeable. A few years ago, when most engine builders were satisfied to make motors that would run, regardless of noise, they paid no attention to some of the finer mechanical problems, but since they have become more skilful, they are cutting down on the noise. But, as I say, the explosions are plainly heard when these engines are running at high speed. With the 'Silent Knight' the only noise is that of the fan and magneto, whether at low speed or the very fastest the motor can run. There can be no noise, for there is nothing for the sleeves to strike against." The two sleeves which go to make up one cylinder work up and down upon each other by means of a small connecting rod affixed to the bottom of each sleeve connected to an eccentric rod, which is driven by a noiseless chain from the engine shaft. The most important features are the slots cut in each side, and close to the upper end of each sleeve, so that, as the sleeves move upon one another the slot in the right-hand side of the inner one will pass the slot of the right-hand side of the outer sleeve, and also the same with the left-hand side. Then when the left-hand slots of the outer sleeve open upon, or come into register with the left-hand slots of the inner sleeve, a passage into the cylinder is opened for the new gas to enter. When a charge of gas has been drawn into the cylinder, one sleeve As the expert explained the motion he showed how it was carried out on an engine from which the casing had been partly removed. The careful mechanical adjustment of the eccentric shaft, which operated the connecting rods that pull the sleeves of the cylinder up and down so that the openings for the entrance of the fresh gas and the expulsion of the exploded fumes come together at just the proper second, was what took the boy's eye. In connection with this the scientist handed the boy a magazine to read. It was a copy of the Motor Age in which an expert said editorially: "Those who pin their faith to the slide-valve motor do so for many reasons, chief of which is that with this motor there is a definite opening and closing of the intake and exhaust parts, no matter at what motor speeds the car be operating. Two years ago one of the leading American engineers experimented with poppet valves and discovered that frequently at the high speeds the exhaust valves did not shut, there not being sufficient time owing to the inability of the valve spring to close the valve in the interval before a cam returned to open it again. With such a condition it is certain that the most powerful mixture was not obtained. With the sleeve valve such failure of operation cannot be, because no matter how fast the motor is operating there is a definite opening and closing for both intake and exhaust valve. "It is a well-known fact that with poppet valves the tension of the springs on the exhaust side varies after five or six weeks' use, and consequently the accuracy of opening and closing is interfered with. Carbon gets on the valve seatings and prevents proper closing of the valve, with the result that the compression is interfered with and the face of the valve injured. These troubles are, as far as can be learned, obviated in the sleeve valve." The friends of the Knight motor claim that it is simpler than the ordinary types of engines, having about one third less parts, that it is economic, powerful, and, as previously pointed out, runs silently. Beside these advantages, there are claimed for it many technical virtues that we need not enter into here. When the motor is throttled down, which lowers the troughs, the points barely dip into the oil and a corresponding less amount of oil is splashed. An oil pump keeps the troughs constantly overflowing. The motor is cooled by a complete system of water jackets, and it is fitted with a double ignition system, each independent of the other. Of course in the adoption of the sliding sleeve type, mushroom valves, cams, cam rollers, cam shafts, valve springs, and train of front engine gears all are eliminated, the sliding parts fulfilling their various functions. The compact little two-cycle motors represent another big fundamental development in the field of gas engines. There are many different makes of two-cycle motors, of course, and all have their various merits. They are used in practically all the work for which gas engines are employed, including automobiles, motor boats, and aeroplanes. It will not be necessary to describe these engines further than to say that the name describes the fundamental difference between them and the four-cycle motors. Instead of the piston making four strokes for every explosion—that is, an, upward stroke to clean out the burnt vapours, a downward stroke to suck in the fresh gas, an upward stroke to compress it, and finally the downward explosion or power stroke, all this work is done in two strokes. For the general development of the gasoline engine, it is only necessary for a boy to look about him. |