DR. NIKOLA TESLA TELLS OF HIS NEW STEAM TURBINE ENGINE A MODEL OF WHICH, THE SIZE OF A DERBY HAT, DEVELOPS MORE THAN 110 HORSEPOWER "HOW would you like to have an engine for your motor boat that you could almost cover with a man's derby hat and yet which would give 110 horsepower?" asked the scientist of his young friend one day when they had been talking about boats and engines. "I never heard of any real engine as small as that," said the boy. "I used to play with toy engines, but they wouldn't give anywhere near one horsepower, much less 110." "Well, I think I can show you a little engine that, for mechanical simplicity and power is about the most wonderful thing you ever have seen, if you would like to make another visit to Dr. Nikola Tesla, who told us all about his invention for the wireless transmission of power the other day. Doctor Tesla invented this little engine and he is going to do great things with it." "Is it a gasoline engine?" he asked. "No, it is a steam turbine, but if you know anything at all about turbines you will see that it is entirely different from any you ever have seen, for Doctor Tesla has used a principle as old as the hills and one which has been known to men for centuries, but which never before has been applied in mechanics." After a little more talk the scientist promised to arrange with Tesla to take the young man over to the great Waterside power-house, New York, where the inventor is testing out his latest invention. We will follow them there and see what this wonderful little turbine looks like. Picking his way amid the powerful machinery and the maze of switchboards, the scientist finally stopped in front of a little device that seemed like a toy amid the gigantic machines of the power-house. "This is the small turbine," says Tesla. "It will do pretty well for its size." The little engine looked like a small steel drum about ten inches in diameter and a couple of inches wide, with a shaft running through the centre. Various kinds of gauges were attached at different points. Outside of the gauges and the base upon which it was mounted, the engine almost could have Yet when Tesla gave the word, and his assistant turned on the steam, the small dynamo to which the turbine shaft was geared, instantly began to run at terrific speed. Apparently the machine began to run at full speed instantly instead of gradually working up to it. There was no sound except the whir of well-fitted machinery. "Under tests," said Tesla, "this little turbine has developed 110 horsepower." Just think of it, a little engine that you could lift with one hand, giving 110 horsepower! "But we can do better than that," added the inventor, "for with a steam pressure of 125 pounds at the inlet, running 9,000 revolutions per minute, the engine will develop 200 brake-horsepower." Nearby was another machine a little larger than the first, which seemed to be two identical Tesla turbines with the central shafts connected by a strong spring. Gauges of different kinds, to show how the engine stood the tests, were attached at various places. When Tesla gave the word to open the throttle on the twin machines the spring connecting the shafts, without a second's pause, began to revolve, so that it looked like a solid bar of polished steel. Outside of a low, steady hum and a slight vibration in the floor, that steadied down after the engine "You see, for testing purposes," said Doctor Tesla, "I have these two turbines connected by this torsion spring. The steam is acting in opposite directions in the two machines. In one, the heat energy is converted into mechanical power. In the other, mechanical power is turned back into heat. One is working against the other, and by means of this gauge we can tell how much the spring is twisted and consequently how much power we are developing. Every degree marked off on this scale indicates twenty-two horsepower." The beam of light on the gauge stood at the division marked "10." "Two hundred and twenty horsepower," said Doctor Tesla. "We can do better than that." He opened the steam valves a trifle more, giving more power to the motive end of the combination and more resistance to the "brake" end. The scale indicated 330 horsepower. "These casings are not constructed for much higher steam pressure, or I could show you something more wonderful than that. These engines could readily develop 1,000 horsepower. "These little turbines represent what mechanical engineers have been dreaming of since steam power was invented—the perfect rotary engine," continued "That is not all, for the turbine is probably the cheapest engine to build ever invented. Its mechanical simplicity is such that any good mechanic could build it, and any good mechanic could repair such parts as get out of order. When I can show you the inside of one of the turbines, in a few moments, however, you will see that there is nothing to get out of order such as most turbines have, and that it is not subjected to the heavy strains and jerks that all reciprocating engines and other turbines must stand. Also you will see that my turbine will run forward or backward, just as we desire, will run with steam, water, gas, or air, and can be used as a pump or an air compressor, just as well as an engine." "But most of your research has been in electricity," Tesla was reminded, for no one can forget that Tesla's inventions largely have made possible most of the world's greatest electrical power developments. "Yes," he answered, "but I was a mechanical "As I told you before when we were talking of the wireless transmission of power, the mechanism will be a development of the principle on which my turbine is constructed. It will be so tremendously powerful that it will make a veritable rope of air above the great machine to hold it at any altitude the navigators may choose, and also a rope of air in front or in the rear to send it forward or backward at almost any speed desired. When that day comes, airship travel will be as safe and prosaic as travel by railroad train to-day, and not very much different, except that there will be no dirt, and it will be much faster. One will be able to dine in New York, retire in an aero Pullman berth in a closed and perfectly furnished car, and arise to breakfast in London." James Watt discovered and put to work the expansive power of steam, by which the piston of an engine is pushed back and forth in the cylinder of an engine, but it has remained for Nikola Tesla to prove that it is not necessary for the steam to have something to push upon—that the most powerful engine yet shown to the world works through a far simpler mechanism than any yet used for turning a gas or a fluid into the driving force of machinery. "How did you come to invent your turbine while you were busy with your wonderful electrical inventions?" Tesla was asked. "You see," he answered, "while I was trying to solve the problem of aerial navigation by electrical means, the gasoline motor was perfected; and aviation as we know it to-day became a fact. I consider the aeroplane as it has been developed little more than a passing phase of air navigation. Aeroplaning "What is this principle?" "The idea of my turbine is based simply on two properties known to science for hundreds of years, but never in all the world's history used in this way before. These properties are adhesion and viscosity. Any boy can test them. For instance, put a little water on a sheet of metal. Most of it will roll off, but a few drops will remain until they evaporate. The metal does not absorb the water so the only thing that makes the water remain on the metal is adhesion—in other words, it adheres, or sticks to the metal. "Then, too, you will notice that the drop of water will assume a certain shape and that it will remain in that form until you make it change by some outside force—by disturbing it by touch or holding it so that the attraction of gravitation will make it change. "The simple little experiment reveals the viscosity of water, or, in other words, reveals the property of the molecules which go to make up the water, of sticking to each other. It is these properties "It is a surprising fact that gases and vapours are possessed of this property of viscosity to a greater degree than are liquids such as water. Owing to these properties, if a solid body is moved through a fluid, more or less of the fluid is dragged along, or if a solid is put in a fluid that is moving it is carried along with the current. Also you are familiar with the great rush of air that follows a swiftly moving train. That simply means that the train tends to carry the air along with it, as the air tries to adhere to the surface of the cars, and the particles of air try to stick together. You would be surprised if you could have a picture of the great train of moving air that follows you about merely as you walk through this room. "Now, in all the history of mechanical engineering, these properties have not been turned to the full use of man, although, as I said before, they have been known to exist for centuries. When I hit upon the idea that a rotary engine would run through their application, I began a series of very successful experiments." Tesla went on to explain that all turbines, and in fact all engines, are based on the idea that the steam "All of the successful turbines up to the time of my invention," he says, "give the steam something to push upon. For instance"—taking a pencil and a piece of paper—"we will consider this circle, the disk, or rotor of an ordinary turbine. You understand it is the wheel to which the shaft is attached, and which turns the shaft, transmitting power to the machinery. Now it is a large wheel and along the outer edge is a row of little blades, or vanes, or buckets. The steam is turned against these blades, or buckets, in jets from pipes set around the wheel at close intervals, and the force of the steam on the blades turns the wheel at very high speed and gives us the power of what we call a 'prime mover'—that is, power which we can convert into electricity, or which we can use to drive all kinds of machinery. Now see what a big wheel it is and what a very small part of the wheel is used in giving us power—only the outer edge where the steam can push against the blades. "In my new turbine the steam pushes against the whole wheel all at once, utilizing all the space wasted in other turbines. There are no blades or vanes or sockets or anything for the steam to push against, for I have proved that they hinder the efficiency of the turbine rather than increase it." "The new turbine offers a striking contrast using as it does practically the entire material of the power-giving portion of the engine. The result is an economy that gives an efficiency of 80 per cent. to 90 per cent. With sufficient boiler capacity on a vessel such as the Mauretania, it would be perfectly easy to develop, instead of some 70,000 horsepower, 4,000,000 horsepower in the same space—and this is a conservative estimate. "You see this is obtained by the new application of this principle in physics which never has been used before, by which we can economize on space and weight so that the most of the engine is given over to power producing parts in which there is little waste material." Tesla then went on to explain the details of his new turbine. Leading the way to a small model in When the casing is clamped down tight, the steam is sent through an inlet or nozzle at the side, so that it enters at the periphery or outside edge of the set of disks, at a tangent to the circle of the rotor. Of course the steam is shot into the turbine under high pressure so that all its force is turned into speed, or what the scientists call velocity-energy. The steel casing of the rotor naturally gives the steam the circular course of the disks, and as it travels around the disks the vapour adheres to them, and the particles of steam adhere to each other. By the law that Tesla has invoked, the steam drags the disks around with it. As the speed of the disks increases For reasons which will be explained later, ordinary turbines cannot be reversed, but Tesla's invention The disks in the little 110-horsepower engine which we saw, were only a little larger than a derby hat were only nine and three quarter inches in diameter, while in his larger turbines he simply increases the diameter of the disks. Tesla further explained that the 110-horsepower turbine represented a single stage engine, or one composed simply of one rotor. Where greater power is required he explained that it would be easy to compound a number of rotors to a double, or triple or even what he calls a multi, or many stage, turbine. In engineering the single stage is called one complete power unit, and a large engine could be made up of as many units as needed, or practicable. "Then do you mean to say," Tesla was asked, "that the only thing that makes the engine revolve at this tremendous speed is the passage of steam through the spaces between those smooth disks?" "Yes, that is all," he answered, "but as I explained This is only one of the many advantages that Tesla points out in his invention, for the turbine is the exemplification of a principle, and hence more than a mechanical achievement. "With a 1,000-horsepower engine weighing only 100 pounds, imagine the possibility in automobiles, locomotives, and steamships," he says. Explaining the large engines that he is testing, one against the other, at the power plant, the inventor said: "Inside of the casings of the two larger turbines the disks are eighteen inches in diameter and one thirty-second of an inch thick. There are twenty-three of them, spaced a little distance apart, the whole making up a total thickness of three and one half inches. The steam, entering at the periphery, follows a spiral path toward the centre, where openings are provided through which it exhausts. As the disks rotate and the speed increases the path of the steam lengthens until it completes a number of turns before reaching the outlet—and it is working all the time. "By that I mean to say," explained Doctor Tesla, "that in reciprocating engines with pistons, the power comes from the backward and forward jerks of the piston rod, and in other turbines the steam must travel a zigzag path from one vane or blade to another all the whole length of the turbine. This causes both changes in velocity and direction and impairs the efficiency of the machine. In my turbine, as you saw, the steam enters at the nozzle and travels a natural spiral path without any abrupt changes in direction, or anything to hinder its velocity." But the Tesla turbine engine, claims the inventor, will work just as well by gas as by steam, for as he points out gases have the properties of adhesion and viscosity just as much as water or steam. Further, he says that if the gas were introduced intermittently in explosions like those of the gasoline engine, the machine would work as efficiently as it does with a steady pressure of steam. Consequently Tesla declares that his turbine can be developed for general use as a gasoline engine. "This is the principle of the pump," said Tesla. "Here the electric motor furnishes the power and we have these disks revolving in the air. You need no proof to tell you that the air is being agitated and propelled violently. If you will hold your hand down near the centre of these disks—you see the centres have been cut away—you will feel the suction as air is drawn in to be expelled from the outer edges. "Now, suppose these revolving disks were enclosed in an air-tight case, so constructed that the air could enter only at one point and be expelled only at another—what would we have?" "You'd have an air pump," was suggested. "Exactly—an air pump or a blower," said Doctor But this was not all, for Tesla showed his visitors a wonderful exhibition of the little device at work. "To make a pump out of this turbine," he explained; "we simply turn the disks by artificial means and introduce the fluid, air or water at the centre of the disks, and their rotation, with the properties of adhesion and viscosity immediately suck up the fluid and throw it off at the edges of the disks." The inventor led the way to another room, where he showed his visitors two small tanks, one above the other. The lower one was full of water but the upper one was empty. They were connected by a pipe which terminated over the empty tank. At the side of the lower tank was a very small aluminum drum in which, Tesla told his visitors, were disks of the kind that are used in his turbine. The shaft of a little one twelfth horsepower motor adjoining was connected with the rotor through the centre of the casing. "Inside of this aluminum case are several disks mounted on a shaft and immersed in water," said Doctor Tesla. "From this lower tank the water has free access to the case enclosing the disks. This pipe leads from the periphery of the case. I turn the current on, the motor turns the disks, and as I open this valve in the pipe the water flows." The 200-horsepower engine, which a man could lift with one hand. How the Tesla Turbine compares in size with a man. He turned the valve and the water certainly did "This is only a toy," smiled the inventor. "There are only half a dozen disks—'runners,' I call them—each less than three inches in diameter, inside of that case. They are just like the disks you saw on the first motor—no vanes, blades or attachments of any kind. Just perfectly smooth, flat disks revolving in their own planes and pumping water because of the viscosity and adhesion of the fluid. One such pump now in operation, with eight disks, eighteen inches in diameter, pumps 4,000 gallons a minute to a height of 360 feet. "From all these things, you can see the possibilities of the new turbine," he continued. "It will give ten horsepower to one pound of weight, which is twenty-five times as powerful as many light weight aeroplane engines, which give one horsepower of energy for every two and one half pounds of weight. "Moreover, the machine is one of the cheapest and simplest to build ever invented and it has the distinct advantage of having practically nothing about it to get out of order. There are no fine adjustments, as the disks do not have to be placed with more than ordinary accuracy, and there are no fine clearances, because the casing does not have to fit more than conveniently close. As you see, there are no blades Doctor Tesla calls the invention the most revolutionary of his career, and it certainly will be if it fulfils the predictions that so many eminent experts are making for it. It is interesting to think that although this latest and most modern of all steam engines is a turbine, the first steam engine ever invented, also was a turbine. Though most of us usually think of James Watt as the inventor of the steam engine, he was not the first by any means, for the very first of which history gives us any record was a turbine, which was described by Hero of Alexandria, an ancient Egyptian scientist, who wrote about 100 B.C. Hero's engine was a hollow sphere which was made to turn by the reaction of steam as it escaped from the ends of pipes, so placed that they would blow directly upon the ball. Centuries later—in 1629, about the time the New England States were being colonized—a scientist named Branca made use of the oldest mechanical principle in the world—the paddle-wheel—which, The picture of Branca's crude machine shows the head and shoulders of a great bronze man suspended over a blazing wood fire. Evidently it is intended to convey the idea that the figure's lungs are filled with boiling water, for he is pictured breathing a jet of steam on to the blades of a paddle-wheel, the revolving of which sets some crude machinery in motion. After Branca, however, the turbine dropped from view and what few inventors did experiment with steam worked on the idea of a reciprocating engine. The principle of the reciprocating engine, as most boys know from their own experiments with toy steam engines, and as was discovered by Watt, is simply the utilization of the power of steam for expanding with great force when let into first one side, and then the other side of the cylinder. Thus, as the steam expands, it pushes the piston back and forth at a high rate of speed, transmitting motion to shafts and flywheels. In 1888 the world was ready for a bigger and more powerful type of steam engine; and C. A. Parsons, an The machines were developed to a high state of efficiency, and are still in general use, although most turbines for driving heavy electrical machinery in the United States are the great Curtiss engines, which are a combination of the principles of both the De Laval and Parsons machines. All of them are run by the old principle of the water-wheel. Instead of the steam being turned into a cylinder to push the piston, it is turned into a steel drum or casing in which wheels or disks are mounted on the central shaft. All along the edge of these wheels are hundreds of little vanes or blades or buckets against which the steam flows from many nozzles placed all around the inside of the casing. The steam flows with great force, and naturally pushing against the blades, starts the wheels and the engine shaft to revolving. After expending its force on the blades that turn the steam passes on to a set of stationary blades which then shoot it out against the next set of moving blades. In the Curtiss turbine the wheels at one end of the shaft are smaller than those at the other, and the steam enters at the small end, where it is under heavy pressure. After having expended its force on the blades of the first wheel, the steam passes through holes in a partition at the side and zigzags back so From this we see the main points of difference between reciprocating engines and turbines, and between most turbines and Tesla's invention. While most turbines take advantage of the expansive power of steam, the main idea is to make use Also it will be seen that Tesla's invention is a turbine in form, but that it is entirely different from either of the two earlier types, because instead of giving the steam something to push against, it is allowed to follow its own natural course around between the smooth disks, and drag them after it. Some kind of a crank motion is necessary in all reciprocating engines, to convert the backward and forward movement of the piston to the rotary motion of the shaft, but this is done away with entirely in the turbine. What engineers call a "direct drive" is substituted in its place. In other words, the turbine wheels or disks, fastened to the shaft, turn it, and drive the machinery directly from the source of power. The speed of the machine is regulated by gears. The great advantage of the "direct drive," particularly for big steamships and for turning big electric dynamos, will be plain to every boy when he thinks of the long narrow body of a ship in which can lie the turbine engines working directly on the propeller shafts (with the exception of certain gears, of course, for regulating the speed) instead of the big flywheels, and flying cranks of marine reciprocating engines. Also with dynamos it is just as important to have the power applied directly to save space and increase the general efficiency of the machine. With the Tesla turbine this disadvantage, as we have seen, is entirely done away with, and the one turbine can be reversed as easily and simply as it can be started. And so, while we are waiting for the world-moving wireless transmission of power and for the completion of Tesla's invention for safe and stable airships, we can look for the speedy development of his turbine in practically all departments of mechanical engineering. |