GEOLOGIC HISTORY

Previous

The geologic history of our earth has been recorded primarily in marine sedimentary rocks, and this record indicates that our earth is very old and that life has been present for many millions of years. The earth is not only extremely old (more than 3½ billion years of age), but it has also undergone many changes which have taken place slowly but steadily and have greatly affected both the earth and its inhabitants. The earth’s physical features have not always been as they are seen today. Geologic research has shown that mountains now occupy the sites of ancient seas, and that coal is being mined where swamps existed millions of years ago. Furthermore, there is much evidence to indicate that plants and animals have also undergone great change. The trend of this organic change is, in general, toward more complex and advanced forms of life, but some forms have remained virtually unchanged and others have become extinct.

In order to interpret geologic history, the earth scientist must attempt to gather evidence of the great changes in climate, geography, and life that took place in the geologic past. The record of these changes can be found in the rocks, and here is found the story of the various events in earth history.

GEOLOGIC COLUMN AND TIME SCALE

In order to discuss fossils and the age of the rocks containing them, it is necessary to become familiar with the geologic column and the geologic time scale (Pl. 1).

The geologic column refers to the total succession of rocks, from the oldest to most recent, that are found either locally or in the entire earth. Thus, the geologic column of Texas includes all rock divisions known to be present in this State. By referring to the geologic column previously worked out for any given area, the geologist can determine what type of rocks he might expect to find in that particular region.

The geologic time scale is composed of units which represent intervals of geologic time, during which were deposited the rocks represented in the geologic column. These time units are used by the geologist to date the events that have taken place in the geologic past.

The largest unit of geologic time is an era, and each era is divided into smaller time units called periods. A period of geologic time is divided into epochs, which, in turn, may be subdivided into still smaller units. The geologic time scale might be roughly compared to the calendar in which the year is divided into months, months into weeks, and weeks into days. Unlike years, however, geologic time units are arbitrary and of unequal duration, and the geologist cannot be positive about the exact length of time involved in each unit. The time scale does, however, provide a standard by which he can discuss the age of fossils and their surrounding rocks. By referring to the time scale it may be possible, for instance, to state that a certain event occurred during the Paleozoic era in the same sense that one might say that something happened during the American Revolution.

There are five eras of geologic time, and each has been given a name that is descriptive of the degree of life development that characterizes that era. Hence, Paleozoic means “ancient-life,” and the era was so named because of the relatively simple and ancient stage of life development.

The eras, a guide to their pronunciation, and the literal translation of each name is shown below.

Cenozoic (SEE-no-zo-ic)—“recent-life”
Mesozoic (MES-o-zo-ic)—“middle-life”
Paleozoic (PAY-lee-o-zo-ic)—“ancient-life”
Proterozoic (PRO-ter-o-zo-ic)—“primitive-life”
Archeozoic (AR-kee-o-zo-ic)—“beginning-life”

Archeozoic and Proterozoic rocks are commonly grouped together and referred to as Precambrian in age. The Precambrian rocks have been greatly contorted and metamorphosed, and the record of this portion of earth history is most difficult to interpret. Precambrian time represents that portion of geologic time from the beginning of earth history until the deposition of the earliest fossiliferous Cambrian strata. If the earth is as old as is believed, Precambrian time may represent as much as 85 percent of all geologic time.

The oldest era is at the bottom of the list because this part of geologic time transpired first and was then followed by the successively younger eras which are placed above it. Therefore, the geologic time scale is always read from the bottom of the chart upward. This is, of course, the order in which the various portions of geologic time occurred and during which the corresponding rocks were formed.

As mentioned above, each of the eras has been divided into periods, and most of these periods derive their names from the regions in which the rocks of each were first studied. For example, the Pennsylvanian rocks of North America were first studied in the State of Pennsylvania.

The Paleozoic era has been divided into seven periods of geologic time. With the oldest at the bottom of the list, these periods and the source of their names are:

Permian (PUR-me-un)—from the Province of Perm in Russia
Pennsylvanian (pen-sil-VAIN-yun)—from the State of Pennsylvania
Mississippian (miss-i-SIP-i-un)—from the Upper Mississippi Valley
Devonian (de-VO-ni-un)—from Devonshire, England
Silurian (si-LOO-ri-un)—for the Silures, an ancient tribe of Britain
Ordovician (or-doe-VISH-un)—for the Ordovices, an ancient tribe of Britain
Cambrian (KAM-bri-un)—from the Latin word Cambria, meaning Wales

The Carboniferous period in Europe includes the Mississippian and Pennsylvanian periods of North America. Although this classification is no longer used in the United States, the term Carboniferous will be found in many of the earlier geological publications and on many of the earlier geologic maps.

The periods of the Mesozoic era and the source of their names are:

Cretaceous (cre-TAY-shus)—from the Latin word creta, meaning chalky
Jurassic (joo-RAS-ik)—from the Jura Mountains of Europe
Triassic (try-ASS-ik)—from the Latin word triad, meaning three

In Texas, the Cretaceous has two divisions, known as either Lower Cretaceous and Upper Cretaceous or as Comanche series and Gulf series, respectively. These designations are for rocks of nearly equivalent age, and both sets of terms have been used by geologists and in publications. In this handbook, both sets of terms are used interchangeably, that is, Lower Cretaceous and/or Comanche series and Upper Cretaceous and/or Gulf series.

The Cenozoic periods derived their names from an old outdated system of classification which divided all of the earth’s rocks into four groups. The two divisions listed below are the only names of this system which are still in use:

Quaternary (kwah-TUR-nuh-ri)
Tertiary (TUR-shi-ri)

While the units discussed above are the major divisions of geologic time, the geologist usually works with smaller units of rocks called formations. A geologic formation is identified and established on the basis of definite physical and chemical characteristics of the rocks. Formations are usually given geographic names which are combined with the type of rock that makes up the bulk of the formation. For example, the Beaumont clay was named from clay deposits that are found in and around Beaumont, Texas.

THE GEOLOGY OF TEXAS

The geologic history of Texas, like the geologic history of the rest of the earth, is recorded primarily in marine sedimentary rocks. These rocks provide some knowledge of the early geography and the first inhabitants of what is now the State of Texas. Most of these rocks were formed from sediments deposited in shallow seas which covered parts of the State at various times in earth history.

By studying these rocks and their relations to each other, geologists have established a geologic column for Texas.

Physiography

In order to discuss the distribution and exposures of the rocks of Texas, it is helpful to be familiar with the physiography of the State. Physiography deals with the study of the origin and description of land forms, such as mountains, valleys, and plains. Plate 9 is a map of Texas which shows the major physiographic provinces within the State.

The majority of the land forms in Texas have been produced by the processes of erosion attacking the structural features of an area. Certain other land forms may be related to the effects of igneous activity which resulted in the accumulation of large masses of igneous rocks. The Davis Mountains are an example of surface features produced in this manner.

In discussing the physiography of Texas, three major physiographic provinces will be recognized. These are (1) the Trans-Pecos region, (2) the Texas Plains, and (3) the Gulf Coastal Plain (Pl. 9).

TRANS-PECOS REGION

The Trans-Pecos region, located in the westernmost part of the State, is an area of mountains and plateaus with broad basins between the major mountain ranges. Many different types of rocks are exposed in Trans-Pecos Texas and these include marine, fresh-water, and terrestrial deposits. In many areas igneous rocks flowed out on the surface and now overlie sedimentary rocks. There are also many places where igneous rocks have been injected into the surrounding rocks, and these igneous rocks have been exposed by later erosion.

Included within this area is the Van Horn uplift of southern Hudspeth and Culberson counties, the Solitario uplift of southern Presidio and Brewster counties, and the Marathon uplift of northeast Brewster County. This region also includes the Big Bend area of Texas, a part of which has been set aside as a National Park where many interesting and important geological features may be seen.

The Trans-Pecos region is one of rugged topography with elevations as high as 8,700 feet, at Guadalupe Peak in the Guadalupe Mountains of northern Culberson County, and as low as 1,500 feet, in the Rio Grande valley.

Numerous invertebrate fossils occur in the Cretaceous limestones and shales of the Trans-Pecos region and in the Paleozoic rocks of the Marathon uplift. The Gaptank formation of Pennsylvanian age and the Permian reef limestones of the Glass Mountains are especially fossiliferous. In addition, many vertebrate fossils have been collected in Trans-Pecos Texas, particularly in and around Big Bend National Park.

TEXAS PLAINS

The plains of Texas are broad expanses of country with very little surface relief. Most of the plains support grasses and some have wooded areas, particularly along stream valleys.

The plains of the northwestern part of the State have been subdivided as follows.

High Plains

This area (Pl. 9), often called “the caprock,” is an elevated plateau which rises above the rolling plains which surround it. The High Plains are bounded by the Pecos River valley on the south, southeast, and west and by the North-Central Plains on the east.

The surface of the High Plains is very flat and characterized by a sparse cover of grasses and few trees. The surface strata consist largely of unconsolidated deposits of sands and gravels of Quaternary and Tertiary age, with remnants of Lower Cretaceous limestones along the southern margin. The rocks of the High Plains are mostly unfossiliferous, but mammalian remains have been found at several localities.

Plate 9
Physiographic map of Texas.

HIGH PLAINS
NORTH-CENTRAL PLAINS
GRAND PRAIRIE
TRANS-PECOS TEXAS
VAN HORN UPLIFT
THE BIG BEND AREA
SOLITARIO UPLIFT
MARATHON UPLIFT
EDWARDS PLATEAU
LLANO UPLIFT
BALCONES FAULT ZONE
GULF COASTAL PLAIN

North-Central Plains

Surface strata of the North-Central Plains (Pl. 9) are westward-dipping Pennsylvanian, Permian, and Triassic rocks. Present also are extensive exposures of Quaternary sands and gravels which trend north-south across the central portion of the region. The area is bounded on the west by the High Plains, on the east by the Grand Prairie, and on the south by the Edwards Plateau and Llano uplift. Many vertebrate fossils have been collected from the Permian and Triassic rocks of this area. There are also many excellent outcrops of fossiliferous Pennsylvanian formations in the North-Central Plains region.

Edwards Plateau

The Edwards Plateau (Pl. 9) is located in south-central Texas and is bounded on the south by the Balcones fault zone and on the north by the North-Central Plains. The surface of the area is typically flat with a gentle slope to the south. The rocks of the Edwards Plateau consist primarily of Lower Cretaceous limestones and shales, many of which are very fossiliferous.

Grand Prairie

This area (Pl. 9) has a relatively flat surface but there are areas of gently rolling hills. The eastern boundary of the Grand Prairie is marked partly by the Balcones fault zone. North of McLennan County, however, the Balcones fault zone is not expressed at the surface and in this area the eastern boundary is defined by the western edge of the Woodbine exposures. Upper and Lower Cretaceous rocks occur at the surface and dip to the southeast; many of these rocks contain a large number of invertebrate fossils.

Llano Uplift

The Llano uplift (Pl. 9) is located in the central part of the State where Precambrian igneous and metamorphic rocks and sedimentary rocks of early Paleozoic age occur on the surface. The area, which now appears as a basin-shaped depression, was at one time covered by Lower Cretaceous rocks and perhaps also by Devonian, Mississippian, and Pennsylvanian strata. These have since been removed by erosion. The east, south, and west sides of the uplift are surrounded by Lower Cretaceous rocks, and the northern margin is marked by the Mississippian and Pennsylvanian formations of the North-Central Plains. The area is, in general, composed of unfossiliferous rocks, but some invertebrate fossils (primarily trilobites and brachiopods) have been collected.

GULF COASTAL PLAIN

The Gulf Coastal Plain (Pl. 9) is composed of Cretaceous, Tertiary, and Quaternary rocks and includes the eastern, southeastern, and southern portions of the State. The rocks of the area consist of sands, clays, shales, and limestones. The Texas Gulf Coastal Plain is bounded on the north and west by the Balcones fault zone, on the south and southwest by the Gulf of Mexico, and extends eastward into Arkansas and Louisiana.

The region has broad river valleys and uplands of low relief, but there is an increase in relief toward the interior of the State. The surface of the area slopes gradually toward the Gulf and successively younger formations are encountered gulfward.

The rocks of the Texas Gulf Coastal Plain are relatively unfossiliferous, but many of the Upper Cretaceous rocks contain fossils. In the central portion of the region some marine formations of Tertiary age locally contain well-preserved invertebrate fossils.

Geology

Geologic studies of the State of Texas have indicated the presence of rocks formed during every era and period of geologic time. These range from the Precambrian granites of the Llano uplift to the Quaternary gravels of the High Plains.

Plate 10
GENERALIZED GEOLOGIC MAP OF TEXAS
Modified from Geologic Map of Texas, 1933

This map in a higher resolution

One of the best ways to become acquainted with the geology of Texas is to study the geologic map of the State (Pl. 10). A geologic map shows the distribution and age of surface rocks and may also indicate what kind of geologic structures are present. The types of rocks that crop out at the surface may be shown by means of symbols, colors, or patterns, and these are explained by a legend which accompanies the map. On Plate 10, colors are used to show the distribution and geologic age of the surface rocks of Texas. Reference to this map will give the collector some idea of the age of the fossils that might be found in a given area. Some special geologic maps may have the location of geologic structures and formation contacts indicated by means of symbols, such as dashed lines, arrows, and similar special markings. However, the map included in this publication does not show any of these special markings.

PRECAMBRIAN ROCKS

The Precambrian rocks of Texas are composed of igneous and metamorphic rocks and some sedimentary rocks. Most of the Precambrian outcrops are in the Llano uplift and El Paso and Van Horn regions.

Alterations produced by vast amounts of time, heat, and pressure have obliterated any trace of fossils that may have been present in these rocks. With the exception of some questionable primitive plants collected in the Van Horn region, no Precambrian fossils have been reported from Texas.

PALEOZOIC ROCKS

Rocks of Paleozoic age are widespread in Texas, and rocks of each period are well exposed. Outcrops are found in the Llano uplift, North-Central Plains, and Trans-Pecos region. The most extensive exposures are of Pennsylvanian and Permian age, and the former are highly fossiliferous in parts of the North-Central Plains.

Cambrian

Rocks of late Cambrian age are exposed in the Llano, Marathon, and Solitario uplifts, and the Franklin Mountains near El Paso. These are sedimentary rocks consisting of conglomerates, sandstones, shales, limestones, and some dolomites.

Some of these formations are relatively fossiliferous, but the specimens are commonly fragmental and very poorly preserved. Fossils that are apt to be found in the Cambrian rocks of the Llano uplift include brachiopods, gastropods, trilobites, and small rounded objects believed to have been formed by algae (primitive one-celled plants). In other parts of the State, Cambrian rocks are sparsely fossiliferous and the fossils consist primarily of fragmental brachiopods, trilobites, and algae.

Ordovician

Ordovician outcrops are present in the Llano uplift of central Texas and in the Marathon, Solitario, El Paso, and Van Horn regions of Trans-Pecos Texas. These are sedimentary rocks and consist largely of sandstones, cherts, limestones, and dolomites.

Although some of the Ordovician formations are fossiliferous, they are seldom collected by amateur paleontologists because they are exposed in relatively inaccessible places and the fossils are usually poorly preserved. Ordovician fossils reported from Texas include sponges, corals, brachiopods, gastropods, cephalopods, and trilobites. In addition, the Marathon formation of the Marathon uplift contains large numbers of well-preserved graptolites (fig. 24, p. 86).

Silurian

The Silurian of Texas is poorly represented in surface exposures, and only one formation, the Fusselman, has been described. The Fusselman crops out in the El Paso and Van Horn regions where it is a white dolomitic limestone. Fossils are not abundant in this formation, but brachiopods and corals have been collected at a few localities.

Devonian

Devonian rocks are best developed in Trans-Pecos Texas, especially in the Marathon, El Paso, and Van Horn regions. In addition to the Trans-Pecos exposures, there are minor outcrops of Devonian rocks in the Llano uplift of central Texas.

Fossils are rare and fragmental in the Trans-Pecos exposures and consist primarily of radiolarians and brachiopods. The Devonian rocks of central Texas are predominantly calcareous and, although the material is usually poorly preserved, many fossils have been collected from them. These include bryozoans, corals, brachiopods, gastropods, and trilobites. Conodonts and fragments of primitive armored fishes (Pl. 37) have also been reported.

Mississippian

Mississippian rocks are exposed in the Llano region and in the Hueco Mountains of the Trans-Pecos area. The Trans-Pecos rocks primarily contain brachiopods with some bryozoans and gastropods.

The central Texas Mississippian rocks are much more fossiliferous and some of the material is well preserved. Fossils reported from this area include brachiopods (Pl. 17), crinoids, gastropods, cephalopods, trilobites, and ostracodes.

Pennsylvanian

Pennsylvanian rocks are well represented in Texas and are exposed in the Llano uplift, north-central Texas, and Trans-Pecos Texas.

In Trans-Pecos Texas fossiliferous rocks crop out in the Hueco and Diablo Mountains. Fossils found in this area are algae, fusulinids, corals, brachiopods, pelecypods, gastropods, cephalopods, and crinoids. There is also a thick section of Pennsylvanian rocks in the Marathon uplift, but only one formation, the Gaptank, is very fossiliferous. It contains many fossils including fusulinids, sponges, corals, bryozoans, brachiopods, gastropods, pelecypods, cephalopods, and crinoids.

Certain Pennsylvanian strata in the Llano region are very fossiliferous, and the material is well preserved. The more abundant forms are fusulinids, corals, brachiopods, gastropods, pelecypods, cephalopods, and crinoids.

Probably the best Pennsylvanian collecting areas are to be found in north-central Texas. Here the thick marine limestones and shales contain large numbers of well-preserved invertebrate fossils, and the terrestrial or shallow marine strata have yielded an abundance of plant fossils. Invertebrate fossils are apt to be found along the banks of streams and gullies and in railroad and highway cuts. Many of the limestones bear large numbers of fusulinids or crinoid stems, and the shales may contain many corals, brachiopods, and mollusks. The best collecting will, of course, be found where the rocks have been sufficiently weathered.

Fig. 8. Sketch of typical crinoidal limestone from the Pennsylvanian of north Texas.

Typical invertebrate fossils are foraminifera (principally fusulinids), corals (especially the solitary or “horn” corals), brachiopods, bryozoans (the lacy and branching types are most common), pelecypods, gastropods (exhibiting a variety of coiling), cephalopods (nautiloids and goniatites predominate), and crinoids, which in many areas are found in thick crinoidal limestones (fig. 8). Some typical Pennsylvanian fossils are illustrated in Plates 14, 15, 17, 18, 19, 20, 21, 24, 32, and 35.

Permian

Permian rocks are found in widely separated areas in Texas. The best exposed section of marine Permian rocks is found in the Glass Mountains of Brewester County, and many of these rocks are very fossiliferous. The original shell material of some of the Permian fossils of this area has been replaced by siliceous material which is very well preserved. These silicified fossils are removed from the limestone by solution in acid, and some most remarkable specimens have been recovered in this manner (Pl. 3). Brachiopods are the most common fossils, but corals, bryozoans, and mollusks have also been recovered.

Extensive Permian exposures occur also in the central part of the North-Central Plains region. These rocks were formed from sediments of both marine and continental origin and some of them are fossiliferous. The marine rocks contain a variety of invertebrate fossils including brachiopods, pelecypods, gastropods, and ammonoids. Those rocks representing terrestrial deposits contain vertebrate remains at many localities, and numerous amphibians and primitive reptiles (Pl. 40) have been collected from them.

MESOZOIC ROCKS

Mesozoic rocks occur over a wide area of Texas and include exposures of Triassic, Jurassic, and Cretaceous age. Many of the Upper and Lower Cretaceous outcrops are quite fossiliferous and easily accessible and thus of considerable interest to many amateur collectors.

Triassic

Triassic rocks crop out in parts of the High Plains, the Glass Mountains of Trans-Pecos Texas, and parts of Pecos, Crockett, Upton, Reagan, and Glasscock and other west Texas counties. These are predominantly nonmarine rocks consisting of conglomerates, sandstones, shales, and some gypsum beds.

Triassic fossils are almost exclusively vertebrates, although some poorly preserved plant and invertebrate remains have been reported. Fossil vertebrates of the Texas Triassic include phytosaurs (Pl. 42), crocodiles, amphibians, and fish.

Jurassic

In Texas, surface exposures of Jurassic rocks are known only from Malone Mountain in southwestern Hudspeth County. The rocks there are limestones, shales, sandstones, and conglomerates. Fossils reported from that locality include marine and fresh-water pelecypods, fresh-water gastropods, and ammonites.

Cretaceous

Rocks of Cretaceous age are widely distributed in Texas and represent one of the more important rock systems of the State. Cretaceous outcrops occur in central Texas, north Texas, the Edwards Plateau, parts of the High Plains, the Gulf Coastal Plain, and Trans-Pecos Texas.

As mentioned earlier, the Texas Cretaceous has been divided into the Lower Cretaceous (Comanche series) and Upper Cretaceous (Gulf series). These rocks consist primarily of marls (a type of calcareous clay), shales, chalks, and limestones, but sands and conglomerates also occur. Cretaceous rocks occur on the surface of about 28 percent of Texas, and many of the larger cities of the State are situated on Cretaceous strata.

Many of the Gulf and Comanche formations contain fossils which are of interest both to amateur and professional paleontologists. Because of their wide distribution in and near large population centers, Cretaceous outcrops can be conveniently visited by many amateur fossil collectors. The fossils are usually abundant and varied, and some are well preserved. Although numerous kinds of fossils may be collected, the more common forms are cephalopods, pelecypods, gastropods, and echinoids. Some of the more typical Cretaceous fossils are shown in Plates 16, 21, 25-28, 32, 33, 35, and 36.

Cretaceous fossils are more commonly found in shales and chalky limestones. Fossiliferous outcrops of these rocks can be found along many streams, roads, and highways of central Texas, north Texas, and the Edwards Plateau. Outcrops which have been weathered are more likely to provide good collecting. In general, collecting is poor in areas covered with heavy vegetation or recent stream deposits. Good collecting localities are outcrops which have a fairly steep slope with a covering of weathered rock material and a minimum of vegetation. One should move slowly from the base of the slope upward while searching the ground for any evidence of fossils, and particular attention should be given to any small gullies since these often contain fossils that have been washed out of upper beds in the exposure.

CENOZOIC ROCKS

Cenozoic rocks are widespread in Texas but occur primarily in a broad belt along the Gulf Coastal Plain. In addition, there are exposures of nonmarine Cenozoic strata in the High Plains, North-Central Plains, and Trans-Pecos region. There are also many exposures of Cenozoic igneous rocks in Trans-Pecos Texas.

Rocks of Cenozoic age occur in more than one-third of Texas and consist of conglomerates, sands, clays, and some limestone and lignite beds.

Tertiary

Extensive exposures of Tertiary rocks trend northeast-southwest in a broad band across the Gulf Coastal Plain area. These strata, consisting of sands, clays, and poorly consolidated limestones, are underlain by Cretaceous rocks.

Invertebrate fossils are common in certain Tertiary formations and pelecypods, gastropods, and corals are the predominant forms. In general, however, fossiliferous exposures are of local occurrence and most of the Tertiary formations are unfossiliferous. Those Tertiary invertebrates that are present, however, are often well preserved and represent many interesting types (Pls. 16, 22, 23, 29, 30, 31).

Tertiary invertebrate fossils are commonly found in sands, clays, and marls. Many of these sands and marls have a green color which is due to the presence of glauconite (a green mineral containing iron and closely related to the micas). At certain localities on the Gulf Coastal Plain the glauconite marls and sands of the Weches and Crockett formations contain large numbers of well-preserved clams, snails, and corals. Fossiliferous exposures of Tertiary rocks are sometimes found in road cuts, but better exposures may be found along the banks of rivers and creeks. Certain bluffs along the Brazos, Sabine, and Trinity rivers are well-known Tertiary fossil collecting localities. Many of these better localities are listed in some of the Bureau of Economic Geology bulletins included in the bibliography of this publication (pp. 109-110).

Quaternary

Quaternary deposits of Pleistocene age (geologic time scale, Pl. 1) are found in many parts of Texas and consist of sands, clays, and gravels.

These rocks are distributed along the Gulf Coast in a belt from 50 to 100 miles wide. They occur also as stream terraces in the Edwards Plateau and North-Central Plains regions. In addition, Quaternary sands and gravels are widely distributed over the surface of much of Trans-Pecos Texas. There are also fossiliferous Pleistocene strata in the High Plains region.

Invertebrate fossils are rare in Pleistocene rocks, but some fresh-water and terrestrial mollusks occur. Vertebrate remains, however, are abundant in many localities, and large numbers of horses, camels, mammoths, and other mammals (Pls. 46-49) have been collected. Fossil bones and teeth (figs. 25, 26, p. 104) are commonly found in the gravels and sands of many of the river terraces of the State.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page