Among the four planets that we commonly see, the easiest, perhaps, to keep track of is Saturn. Its peculiar aspect is very distinctly marked. It appears as a large, pale, yellow star shining with a soft, misty light that sometimes barely escapes being dull. It is always as bright as a first-magnitude star, but not always as bright as Sirius, and never as brilliant as Mars, Jupiter, or Venus when they are at their brightest. The general effect of it is as a large rather than a brilliant star. The only time it loses these very marked characteristics is when it is drawing in toward the sun, and thus nearing conjunction. At such times we see it each evening lower in the rosy glow of the setting sun, and more and more obscured and changed in color by the surrounding atmosphere. Then it sometimes seems as red as Mercury, and some But there is no mistaking the planet even under this aspect if we but stop to think where he is. And it is through knowing where he is that it is so easy to keep track of Saturn. For nearly two years and a half, on an average, he remains in the same constellation, passing slowly over about one degree a month, or a little more than twelve degrees in a year, occupying almost thirty years in making one circuit through the constellations of the zodiac. One has, therefore, ample time to get well acquainted with him before he has wandered far from the position in which one first found him. For nearly six months each year Saturn shines as an evening star, and, returning each The one degree a month which he travels along the ecliptic is toward the east, except for a little more than two months before opposition, and the same length of time afterward, when he has the slight apparent retrograde motion due to our overtaking and passing him, which has been explained. With Saturn this motion is so slight—only four degrees—that it does not put him much out of position, and it is, in fact, not much noticed except by close observers. He has all the time been going steadily on toward the east (for the retrograde motion is only an apparent motion), and the annual change of twelve degrees in position is always in this direction. My first acquaintance with Saturn was when he was traveling through Pisces and Aries, where there are no first-magnitude stars to mark the path of the wandering bodies in the heavens. It was then that I AROUND ONE CIRCUIT OF THE SKIES WITH SATURNSaturn is now (the autumn of 1912) in the first part of his path through Taurus, and he will be in that constellation during all of 1913 and the greater part of 1914. From 1912 to 1920 he will be a beautiful object in the winter sky, threading his way slowly through that splendid galaxy of stars that blazes across the glittering sky peculiar to the cold winter nights. He will pass between the Pleiades and Aldebaran, and will be in opposition in that region on November 23, 1912. Farther east in the constellation he will be in opposition in the first week of December, 1913. Almost on the border line between Taurus and Gemini he will be in opposition during the third week in December, 1914; and, as this is very near the perihelion point in Saturn’s orbit, the planet will then be at his brightest. In 1915 he will not be in opposition at all; but sometime within the first two or three days of 1916 he will reach that position, and will then be well on in his journey across Gemini. For these four years—from 1912 to 1916—he will be visible during the entire night, at the times of his opposition, and in his best condition. The rings that surround him will then be placed so that we will get a broad expanse of light from them, as well as from the planet itself, which greatly increases its brightness. Saturn will then continue to move across In 1917 Saturn will be in opposition in the region of Gemini, about the middle of January. In 1918 opposition will occur about the last of January, and Saturn will then be in Cancer. The next year he will be in opposition sometime during the second week in February, and will then be situated be About a year after passing Spica, the white, sparkling, first-magnitude star in Virgo, Saturn will enter Libra, crossing that constellation near the lower part of the square in it. From there he will go through Scorpio and Sagittarius, passing above Antares and the “milk dipper,” and in about 1932 will have reached that comparatively starless region which includes a part of Sagittarius and all of Capricornus, Aquarius, Pisces, and Aries. For the next nine and a half years he will give distinction to this part of the heavens, and thus complete his circuit of twenty-nine and a half years, and, with never resting, never changing movement, will start on a new round, with a new generation of eyes following his fair face along the great circle of the ecliptic. Saturn is brightest when he is in Taurus, not Saturn is almost twice as far from the sun as Jupiter, and between nine and ten times farther than we are. His mean distance from the sun is eight hundred and eighty-seven million miles; but his distance varies nearly one hundred million miles between perihelion and aphelion. His orbit is only a trifle more eccentric than that of Jupiter, but the variation in miles is so much greater because the orbit is so much larger. His average distance from the earth at opposition is seven hundred and ninety-four million miles, but at the most favorable While Saturn is next to Jupiter in size among the planets, he is not as large as Jupiter by two-thirds, but his mass is almost three times greater than that of all the other planets put together except Jupiter. It is ninety-five times greater than that of the earth. In diameter Saturn is 72,772 miles; but it is more flattened at the poles than any other planet, and in consequence there is a difference of nearly seven thousand miles between its polar and its equatorial diameters. The density of Saturn is less than that of any other planet, and it is ten times less than that of the earth. No other planet is less dense than water; but Saturn would float in water, and is not more dense than SURFACE ASPECTS AND CONSTITUTIONIt is not at all certain that Saturn, more than Jupiter, has any solid surface. Indeed, it is almost certain that it has not. It is surrounded by an atmosphere of great density, and we do not at any time see the surface of the planet. It is believed probable that it is at least largely in a liquid state, if not to a great extent even gaseous. The planet is certainly not in any way dependent on the sun for the extraordinary heat that everything indicates it to have, and its surface is brighter than it is believed Its surface is belted and spotted somewhat after the manner of Jupiter’s, but, being so much farther from us than Jupiter, it does not disclose its surface features with the same distinctness. Apparently it is much less turbulent than Jupiter; but even this we are not quite certain of, and it may seem more placid because we do not so well see its agitations. Like all the outer planets, it differs in its constitution from the earth and the other inner planets. Its atmosphere contains compounds with which we are not familiar, and DAY AND NIGHTThe length of Saturn’s day, or its period of rotation on its axis, is about ten hours and a quarter. Like Jupiter, it has slightly different rates of rotation in different latitudes, thus showing its lack of solidity. The rate of rotation has been determined, as in the case of Jupiter, by observation of the spots on its surface, which, while they are not exactly permanent, yet remain apparently in the same positions for months and even years at a time, and are thus sufficiently stable to measure a rotation of so short a time as ten hours. Whirling over at this rate would cause the sun to appear to skim across the sky very swiftly as viewed from Saturn. In size, it would not seem more than three times as large as Venus at her brightest seems to us, and every minute it would cover a distance about equal to the diameter of the full moon as we see it. In an hour it would THE RINGS AND MOONS OF SATURNBut the circling stars and the swift-moving sun are the least part of the splendid spectacle that might be seen from Saturn. He is surrounded with no less than ten moons of more or less imposing size, and in addition has three rings circling around with him, composed of myriads of small satellites, to The outer ring is nearly ten thousand miles broad, and is separated from the next one by a space of about seventeen hundred miles. The second ring is nearly eighteen thousand miles across. It is very bright on the outer edge, but gradually grows less so, until, with a not very perceptible division, it fades into the inner ring, which is but slightly luminous, and is called the crape ring. This is about nine thousand miles broad and nearly ten thousand miles from Saturn. This gradual fading of the rings to a dusky hue toward the center, and then the blackness of the space between them and the planet, gives them from certain points of view a nest-like appearance; and my first impression of Saturn, when I saw him through the tele Notwithstanding the imposing breadth of these rings, they are less than a hundred miles in thickness. They are, in fact, nothing more than an untold number of tiny satellites revolving about Saturn in the same plane and close enough together to appear, at the distance they are from us, as if they were one body. Just how close they are together, and how they appear when near by, we do not yet know. It was first shown by mechanical laws that they must be composed of separate bodies; the spectroscope shows that they are; and it has recently been thought that they have even been seen to be so through a telescope. Being all in the same plane, they form a flat, broad, thin ring, so thin that when the edge of the ring is turned toward us we cannot see them at all. We never see them at their full breadth. If we did, Saturn would be much brighter at times than he ever is. The plane in which they revolve is the plane of Saturn’s equator; and the axis of Saturn, with the rings, has a tilt of twenty-seven degrees in his orbit. The result of this is SATURN AND ITS RINGS Photographed at Mt. Wilson by E.E. Barnard, the six exposures being made on one plate. It is believed that Saturn’s rings were never a part of the planet, but are mere particles of cosmic materials which happened to be left over, and which he has gathered up by his force of gravity and compelled to revolve about him. Saturn, more fortunate than Jupiter, has escaped the unimaginative naming of his moons by number, though one would think that, having such a numerous offspring, a shortage in names would be more likely to occur in his than in any other planet family. They all have names more or less connected with the great god whose name the planet bears, and are, in order of their distance Until 1848 seven moons were all that were known to belong to Saturn. In that year little Hyperion, whose diameter, it is thought, can hardly exceed two hundred miles, came into our view. A little more than fifty years later (in 1898) Phoebe made her bright mark on a photographic plate at Harvard, and was caught. By tracing her from one plate to another her orbit was computed, her probable size determined, and practically all that is known about her was found out before she was seen, which was not until 1904. She is not much larger than a good-sized On account of their great distance from the sun Saturn’s moons are, of course, not very bright, and all of them put together do not give one-tenth as much light to Saturn as we receive from our moon. But, such as they are, they may some day be very useful to Saturn as a means of illumination. Receiving as he does a hundred times less light from the sun than we do, he may be some day much in need of the light reflected from all his rings and moons. SEASONSThe seasons on Saturn are somewhat like ours in the succession of spring, summer, autumn, and winter; but the inclination of its axis to its orbit being twenty-seven degrees instead of twenty-three and a half, as ours is, each season is much more accentuated than ours. The sun climbs higher during the northern summer, and sinks correspondingly lower during the winter. But in length Saturn’s seasons are very different from ours. Like his year, they are about twenty-nine and one-half times as long as ours. Each one is more than seven years long. Even the agreeable seasons might grow monotonous to one in that time; but to be spinning through the rapidly alternating days and nights of Saturn during seven long years of winter is a situation that one does not care to contemplate. It is with world personalities as with human personalities: however much we may admire their superior grandeur, when we consider details we would not change places with them. The symbol of Saturn is an ancient scythe (?), which gets its appropriateness from the fact that the deity of that name was the special protector of agriculture. |