IX THE PATH OF THE PLANETS

Previous

Though the planets are called wanderers, they are not by any means the vagrants that the name might imply. They have a fixed course among the stars from which they never deviate, and the ways of all of them, and also of the sun and the moon, are confined to a comparatively narrow strip in the sky.

That strip is called the zodiac. It is only sixteen degrees wide, and extends like a narrow band all the way around the heavens. It lies so that it is always easy to observe; and, being so limited, very little observation is necessary to become familiar with every part of it. Within its limits all the movements of the sun, the moon, and the planets take place. Through the center of it is the ecliptic, the great circle that marks the annual apparent path of the sun through the heavens. It is the standard circle from which we measure the paths of the moon and the planets. Whatever degree their courses vary from the ecliptic is what we call the inclination of their orbits. If the plane of the orbit of a planet is tilted away from the ecliptic, the planet will travel half the time on one side of it, and half the time on the other.

The orbits are, in fact, very little inclined to the ecliptic, and all but one of the planets may always be found within three degrees of it, most of them nearer than this. The one exception is Mercury, which is sometimes as much as seven degrees from this central line of the zodiac, but ordinarily it is not so far as this. Uranus is so nearly on the ecliptic that an ordinary observer would not notice the deviation, and particularly as Uranus can rarely be detected with the naked eye, and can never be thus followed. Of the four planets which are the ones we ordinarily see, Mars and Jupiter are never as much as two degrees from the ecliptic, Saturn never more than two and a half degrees, and Venus never more than about three degrees. They are all usually nearer than these outside limits. The greatest distance of the moon from the ecliptic is about one and a half degrees.

Hence, with the exception of Mercury, all the planets and the sun and the moon travel in a path six degrees wide, which is only one degree wider than the distance between the pointers as we see them in the Great Dipper. The fact that the zodiac is sixteen degrees wide, or eight degrees on each side of the ecliptic, is due only to a very generous allowance for the vagaries of Mercury, which he really does not quite need. For Mercury is always as much as twice the breadth of the moon, or one degree, inside of the zodiac, and usually more than that.

Because the earth is tilted on its axis twenty-three and a half degrees from the perpendicular, the ecliptic runs through the heavens in an oblique circle, crossing the line of the equator at two points called the vernal and autumnal equinoxes. The equator in the heavens is the great circle extending around the celestial sphere half-way between the north and south poles. It is always practically ninety degrees from the north star, and the points at which the ecliptic intersects it are called the equinoxes. These are the only two points on the ecliptic that are just ninety degrees from the pole. The word equinox is derived from equus (equal) and nox (night), and when the sun is at the equinoxes the days and nights are of equal length.

From the vernal to the autumnal equinox the line of the ecliptic is north of the equator, and hence high in the sky, reaching its highest point midway between the equinoxes. It then crosses the equator again and runs obliquely south to the lowest point in its path, and then curves northerly back to the vernal equinox. The vernal equinox is the point at which the sun arrives when spring begins. This results in the sun’s being north of the equator from spring until autumn, and south of it from autumn to spring.

As the part of the zodiac that we can see best at night is that opposite where the sun is, so in summer, when the sun is high, we see best the part of the zodiac which is low in the southern skies in the evening; and in the winter, when the sun is in the southern half of his journey, the part of the zodiac best seen by us is high in the heavens. No part of it, however, is ever as high as the zenith, or directly overhead, and no planet is ever seen as far north as the zenith in any place whose latitude is more than twenty-three and one-half degrees from the equator.

To know the paths of the planets it is necessary to know only twelve constellations out of the seventy or more in the entire heavens; but it is difficult to imagine any one’s learning these twelve without becoming interested in and more or less acquainted with many of the splendid stars and constellations that lie on each side of them. The larger one’s acquaintance is with the appearance of the skies as a whole, the easier, naturally, it will be to distinguish the planets from the stars, and to follow their courses. But the planets themselves may be intimately known quite apart from any but the twelve constellations forming the zodiac. Happily, among them we shall find some of the most beautiful constellations in the heavens, and some of the most splendidly brilliant first-magnitude stars.1

The twelve constellations of the zodiac are as follows:

Pisces, the Fishes.
Aries, the Ram.
Taurus, the Bull.
Gemini, the Twins.
Cancer, the Crab.
Leo, the Lion.
Virgo, the Virgin.
Libra, the Scales or Balance.
Scorpio, the Scorpion.
Sagittarius, the Archer.
Capricornus, the Goat.
Aquarius, the Water-Carrier.

We shall begin at the point of the vernal equinox to trace the line of the ecliptic through these constellations, and that line will mark for us the path of the sun, the moon, and all the planets. It is convenient to begin at this point, because it is where the sun crosses the equator in the spring, and hence it is at the beginning of that part of the ecliptic which lies north of the equator.

The point of the vernal equinox is now situated in the constellation Pisces. It is not marked by any bright star, but is not very difficult to find. It marks the point on the eastern horizon where the sun rises about March 21st, and about the 21st of September it is on the eastern horizon exactly opposite that point in the western sky where the sun sets. It is always ninety degrees from the pole, and if one chances to know the constellation Cassiopeia, which is shaped like a chair and is on the opposite side of the pole from the Big Dipper, one can locate the vernal equinox by drawing a line from the pole-star through the star which marks the lower part of the front of the chair, and extending it until it is ninety degrees long. The ninety degrees can be estimated by using the distance between the pointers in the Dipper (which is five degrees) as a measure. The star mentioned in Cassiopeia is about thirty-two degrees from the north star.

Having once learned the constellations of the zodiac and, approximately, the line of the ecliptic, it is not necessary for the ordinary observer to keep in mind the exact location of the vernal equinox. It is, however, an important point for the student of mathematical astronomy.

Beginning at this point, the ecliptic runs through Pisces in a northeasterly direction for about thirty degrees to Aries, the second constellation of the zodiac.

ARIES

Aries is best seen in the autumn when the sun is in the opposite side of the heavens. It is marked by a small acute-angled triangle, with the apex toward the north and the brightest star of the three at the apex. This star is called Hamal, and, while not a first-magnitude star, is a rather bright one of the second magnitude; and the triangle itself is very distinctly marked. It is the only group of stars by which to distinguish Aries, and it is sometimes confused with the little constellation called Triangulum, which lies just west of it, or above it, as it rises. With this in mind, Triangulum may be made to serve as an identifying mark. They both rise just a trifle north of the exact east early in the evenings of late September and October. Triangulum rises first, with its apex toward the south. In less than an hour the triangle of Aries arrives with its apex pointed north. The ecliptic runs about five degrees below this triangle, and its path across Aries is about twenty-eight degrees long. When one sees any very bright star in Aries, one may be sure it is a planet. The sun is in Aries from April 16th to May 13th.

During the summer this constellation is not visible in the early evening; but it may be seen every evening from September to April, drawing all the time nearer to the sun, and setting earlier each evening until the sun blots it out. From this constellation the ecliptic runs into Taurus, the third zodiacal constellation.

TAURUS

This constellation may be identified by the brilliant first-magnitude star Aldebaran,2 and the misty Little Dipper of the Pleiades. It is a very beautiful and large constellation. About an hour and a half after the triangle of Aries has risen, the soft-twinkling cluster of tiny stars which form the Pleiades comes above the eastern horizon, and about an hour later a V-shaped cluster of brighter stars, with a very bright-red one at the end of the lower half of the V, appears. This last cluster is the Hyades, and the bright star is Aldebaran.

By these two clusters we may know the constellation. The ecliptic passes across Taurus about four degrees east of the Pleiades, and about seven degrees west of Aldebaran. The planets in passing through this region often come very close to the Pleiades, and parts of the group are sometimes occulted by the moon. Taurus is conspicuous in the eastern evening sky from September until nearly January. From that time on until May it may be seen in the evening, high up in the sky, a little farther west each evening, until it disappears in May. Among the four planets that we most see Mars is the only one that resembles Aldebaran in color. They are both reddish, but Mars is always west of Aldebaran near the line of the ecliptic, and also it does not have the same twinkling face that Aldebaran shows; hence the star and the planet need never be confused. Mercury, it is true, is reddish and twinkles, but so seldom needs to be taken into account that it will not be troublesome. The other planets when in Taurus will proclaim themselves by their color and size. There is no very bright star in Taurus except Aldebaran, which has been described. Any bright star north of it in the constellation is sure to be a planet.

Through Taurus the line of the ecliptic runs in a northeasterly direction, and about fifteen degrees east from Aldebaran it passes about half-way between two fairly bright stars which mark the tips of the horns of Taurus, and from there on into the fourth constellation.

GEMINI

Gemini lies northeast of Taurus, and is outlined by a box-shaped figure something more than twenty degrees long and about five degrees wide. The two stars marking the end of it farthest from Taurus are the famous twins, Castor and Pollux.3 Pollux is a first-magnitude star, and Castor is very little less bright. They are both very charming stars, and too conspicuous to escape easy identification. Castor is greenish in tint, and rises between an hour and a half and two hours later than Aldebaran. About fifteen minutes after he appears, Pollux, with a yellow-tinted face, comes up over the eastern horizon. They rise about thirty degrees north of the exact east. The ecliptic has reached its highest point north just after passing through the horns of Taurus. It then runs through Gemini in a southeasterly direction, curving diagonally across the main figure and passing five or six degrees below Pollux. Gemini can be seen from October to early June. It is particularly charming in May in the northwest just after sundown, and when any of the planets are going along this part of their path at that season, they are sure to win one’s interest and admiration.

CANCER

After leaving Gemini the ecliptic passes through the small constellation Cancer. Its way runs southeasterly for about twenty degrees, passing just south of a charming little cluster of stars which can be dimly seen with the unaided eye, but comes out brilliantly with an opera-glass. It is called PrÆsepe, or the Bee-hive, and is the only object to attract attention in Cancer. Fortunately, it is so situated as to mark the line of the ecliptic through the constellation. The Bee-hive rests almost exactly on the ecliptic.

LEO

Leaving Cancer, the sun enters Leo, a large, well-marked constellation known to many persons by the conspicuous figure in it of a sickle. At the end of the handle of the Sickle is Regulus, one of the bright first-magnitude stars. A little more than fifteen degrees east of the Sickle the rest of the constellation is marked by a large triangle formed by three rather bright stars. Both of these figures are well marked and easily seen, making Leo one of the easiest of the constellations to find. The sun crosses it in a southeasterly direction which leads straight across Regulus. The star is often occulted by the moon, and by the sun also, though that we cannot see on account of the blinding light of the sun.

Leo is visible nearly eight months in the year. It is in the eastern sky early in the evening in the winter, and shines all night from late in December until April. In May and June it is traveling westerly, but high up in the sky. In July it is in the western sky in the evening. The sun passes through it from August 7th to September 14th. Regulus is a white star, and twinkles violently, so that it is easily distinguished from any planet that is passing near it. In the other part of the constellation the path of the planets runs about ten degrees below the triangle.

VIRGO

When the sun has passed Leo it enters the largest of all the constellations, Virgo, and passes through it in forty-five days, from September 14th to October 29th. The constellation is far from rich in bright stars; but one may find the ecliptic, or path of the sun, by following a curved southeasterly line from Regulus about sixty-five degrees until it reaches Spica,4 a very bright first-magnitude star in this comparatively starless region. If there is any doubt about Spica, it may be found by following the curve of the handle of the Big Dipper about thirty degrees, which brings one to the splendid Arcturus, and then about thirty degrees farther on, which points one to Spica.

Eight or nine days after entering Virgo the sun crosses the equator at the autumnal equinox, and the rest of the ecliptic lies farther south. Spica is about ten degrees south of the equator.

Spica is in the east during the early evenings in April and May; throughout June and July it may be seen in the south during the evening. In October it sets at about the same time as the sun.

The autumnal equinox, or the point where the ecliptic crosses to the south of the equator, is in Virgo, and lies about fifteen degrees northeast of Spica.

LIBRA

Libra is the next zodiacal constellation, and it is a small one. The sun passes through it in about twenty-three days. It may be known by four fairly bright stars which form a more or less imperfect square. The ecliptic passes along the southern edge of this figure.

During the summer and early autumn, Libra is best seen. It is then passing across the southern sky, drawing nearer the west each evening. A planet passing across this constellation would always be easy to identify, since it would always be so much brighter than any star in this region. The sun enters Libra about October 29th, and it is not visible in the evening during the rest of the year.

SCORPIO

It is a joy to know Scorpio, quite aside from its connection with the path of the planets. It is a brilliant constellation, best seen during the summer and autumn, as it passes across the southern sky. It is the most southerly of any of the constellations of the zodiac; but the ecliptic passes through only a very small portion of the northern part of it, so the sun does not reach the most southerly point in its path while it is in this constellation.

Scorpio may be best identified by its brilliant deep-red star Antares,5 which is supposed to lie in the heart of the Scorpion. The whole figure makes a splendid serpent-like sweep toward the southern horizon, and is one of the most conspicuous objects just west of the Milky Way in the south in summer.

The line of the ecliptic runs about three degrees north of Antares; hence the planets in their course sometimes pass very near it. Jupiter has been in that region all this year (1912), and will not be far from there the early part of 1913. Mercury and Mars both have something the color of Antares; but this is not likely to result in any confusion. The star is always there, and in the same relative situation with reference to the other stars. When Mars is there, it will always be above the star. Mercury can seldom be seen when he is in Scorpio. If he is in greatest elongation while there, he will still be near the sun, and the sun, as seen from the middle latitudes, is so far south and so near the horizon when in that part of the ecliptic that the situation will not be favorable for seeing the planet. Farther south, and particularly in high altitudes, Mercury could be well seen in Scorpio, but if the position of Antares is kept in mind, Mercury will easily be recognized as a stranger in the constellation.

The sun enters Scorpio about November 21st, and the constellation then ceases to be visible in the evening sky until the following May. It is in its greatest glory during the summer and early autumn.

SAGITTARIUS

When the sun leaves Scorpio it crosses the Milky Way into Sagittarius, and there reaches the lowest point in its path, twenty-three and one-half degrees south of the equator. This constellation is best distinguished by the little “milk dipper,” which is easily seen turned upside down just at the eastern edge of the Milky Way. The line of the ecliptic runs a little north of it. The constellation may be best seen during about the same months that Scorpio is visible. The sun enters it, and it passes out of view about the middle of December.

CAPRICORNUS AND AQUARIUS

From Sagittarius the ecliptic runs in a northeasterly direction through a region in which there are no very bright stars, nor any very distinct outlines of figures. The two constellations through which it passes are Capricornus and Aquarius. It then runs a few degrees into Pisces, and there reaches the vernal equinox, where we began to trace its course.

Although one cannot trace the line of the ecliptic with the same definiteness in this region as in one where there are bright stars to mark the way, yet when a planet is in this part of its path it is perhaps more conspicuous and more easily recognized than when it appears in any other part of the sky, because of the very absence of other bright bodies. These constellations comprise all that region running from the Milky Way east to the vernal equinox. It is a part of the heavens easily seen during the pleasant evenings of summer and autumn, and if a planet is crossing it during those seasons it is particularly well placed for observation.

The two brightest stars in Capricornus are of the third magnitude, and lie about twenty degrees northeast of the “milk dipper.” The ecliptic runs just under them. Through Aquarius it runs six or seven degrees above a waving line of faint stars, which are supposed to represent the water that Aquarius is pouring from his urn.

If one will take the trouble to trace the line of the ecliptic through the sky, and remember that it lies exactly in the center of the zodiac, and that the planets are, therefore, within a very few degrees of it, one will have no trouble in keeping track of them. The mere knowing of these constellations is in most cases sufficient, since the planets will disclose their identity in other ways than by position merely.

The signs of the zodiac are somewhat different from the constellations. They are simply twelve equal divisions of thirty degrees each, making in all three hundred and sixty degrees, which is the whole number of degrees in any circle. They are so divided for convenience in scientific observation and reckoning. About two thousand years ago the signs and the constellations in the main coincided, and they still bear the same names. The point of the vernal equinox was then at the beginning of the sign and the constellation Aries. But, owing to certain motions of the earth, this point shifts backward, or toward the west, about one degree every seventy-two years. In two thousand years it has shifted about twenty-eight degrees, until now the sign Aries, with the vernal equinox at its western boundary, lies almost wholly in the constellation Pisces, the sign Taurus corresponds approximately to the constellation Aries, and so on around the circle. It is important to know this in following the planets, because all almanacs and scientific publications deal mainly with the signs of the zodiac, and not with the constellations. When a planet’s place is said to be in Aries, Taurus, or Gemini, one will find it in Pisces, Aries, or Taurus, respectively. And so it is with all the other signs; they are each one constellation behind the one bearing the same name. And this is why, beginning with the vernal equinox, Pisces is the first constellation in the zodiac, while Aries is the first sign.

The following is a list of the signs of the zodiac, with the corresponding constellations. The symbols given in parenthesis are the ones used for these signs in all almanacs:

SIGN CONSTELLATION
Spring
signs
Aries (?) Pisces
Taurus (?) Aries
Gemini (?) Taurus
Summer
signs
Cancer (?) Gemini
Leo (?) Cancer
Virgo (?) Leo
Autumn
signs
Libra (?) Virgo
Scorpio (?) Libra
Sagittarius (?) Scorpio
Winter
signs
Capricornus (?) Sagittarius
Aquarius (?) Capricornus
Pisces (?) Aquarius6


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page