GENERAL METHODS

Previous

The present study was based chiefly on live-trapping as a means of sampling a population of voles and tracing individual histories without eliminating the animals. Live-trapping disturbs the biota less than snap-trapping and gives a more reliable picture of the mammalian community (Blair, 1948:396; Cockrum, 1947; Stickel, 1946:158; 1948:161). The live-traps used were modeled after the trap described by Fitch (1950). Other types of traps were tested from time to time but this model proved superior in being easy to set, in not springing without a catch, in protecting the captured animal and in permitting easy removal of the animal from the trap. A wooden box was placed inside the metal shelter attached to each trap and, in winter, cotton batting or woolen scraps were placed inside the boxes for nesting material. With this insulation against the cold, voles could survive the night unharmed and could even deliver their litters successfully. In summer the nesting material was removed but the wooden box was retained as insulation against heat.

Bait used in live-traps was a mixture of cracked corn, milo and wheat, purchased at a local feed store. The importance of proper baiting, especially in winter, has been emphasized by Howard (1951) and Llewellyn (1950) who found an adequate supply of energy-laden food, such as corn, necessary in winter to enable small rodents to maintain body temperature during the hours of captivity. The rare instances of death of voles in traps in winter were associated with wet nesting material, as these animals can survive much lower temperatures when they are dry. Their susceptibility to wet and cold was especially evident in rainy weather in February and March.

Preventing mortality in traps was more difficult in summer than in winter. The traps were set in any available shade of tall grass or weeds; or when such shade was inadequate, vegetation was pulled and piled over the nest boxes. The traps usually were faced north so that the attached number-ten cans, which served as shelters, cast shadows over the hardware cloth runways during midday. Even these measures were inadequate when the temperature reached 90°F. or above. Such high temperatures rarely occurred early in the day, however, so that removal of the animals from traps between eight and ten a. m. almost eliminated mortality. Those individuals captured in the night were not yet harmed, but it was already hot enough to reduce the activity of the voles and prevent further captures until late afternoon. When it was necessary to run trap lines earlier, the traps were closed in the morning and reset in late afternoon.

Reactions of small mammals to live-traps and the effects of prebaiting were described by Chitty and Kempson (1949). In general, the results of my trapping program fit their conclusions. Each of my trapping periods, consisting of seven to ten consecutive days, showed a gradual increase in the number of captures per day for the first three days, with a tendency for the number of captures to level off during the remainder of the period. Leaving the traps baited and locked open for a day or two before a trapping period tended to increase the catch during the first few days of the period without any corresponding increase during the latter part of the period. Initial reluctance of the voles to enter the traps decreased as the traps became familiar parts of their environment.

At the beginning of the study the traps were set in a grid with intervals of 20 feet. The interval was increased to 30 feet after three months because a larger area could thus be covered and no loss in trapping efficiency was apparent. The traps were set within a three foot radius of the numbered stations, and were locked and left in position between trapping periods.

Each individual that was captured was weighed and sexed. The resulting data were recorded in a field notebook together with the location of the capture and other pertinent information. Newly captured voles were marked by toe-clipping as described by Fitch (1952:32). Information was transferred from the field notebook to a file which contained a separate card for each individual trapped.

In the course of the program of live-trapping, many marked voles were recaptured one or more times. Most frequently captured among the females were number 8 (33 captures in seven months) and number 73 (30 captures in eight months). Among the males, number 37 (21 captures in six months) and number 62 (21 captures in eight months) were most frequently taken. The mean number of captures per individual was 3.6. For females, the mean number of captures per individual was 3.8 and for males it was 3.4. Females seemingly acquired the habit of entering traps more readily than did males. No correlation between any seasonally variable factor and the number of captures per individual was apparent. To a large degree, the formation of trap habits by voles was an individual peculiarity.

In order to study the extent of utilization of various habitats by Microtus, a number of areas were sampled with Museum Special snap-traps. These traps were set in linear series approximately 25 feet apart. The number of traps used varied with the size of the area sampled and ranged from 20 to 75. The lines were maintained for three nights. The catch was assumed to indicate the relative abundance of Microtus and certain other small mammals but no attempt to estimate actual population densities from snap-trapping data was made. In August, 1952, when the live-trapping program was concluded, the study areas were trapped out. The efficiency of the live-trapping procedure was emphasized by the absence of unmarked individuals among the 45 voles caught at that time.

Further details of the methods and procedures used are described in the appropriate sections which follow.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page