The manufacture of optical glass forms a very important section of the glass industry, and presents some of the most difficult problems the glass maker has to deal with. It is in this section of the glass trade that applied physical and chemical science becomes of the utmost importance to the manufacturer. The production of optical glass is impeded by any defects which become evident in the structure of glass when examined under a polariscope. The presence of any striae, seeds, or stresses within the structure of the glass disqualifies it for any important optical work. It is a difficult matter to get pieces of optical glass only a few inches in diameter of the right optical constant and refractive index that are homogeneous enough to allow of the light rays passing without some dispersion when set up for use. It becomes necessary, therefore, to achromatise one glass with another in the form of doublets to correct aberration. A high degree of transparency and durability is necessary in all optical glasses. The persistent evidence of stresses developed in the solidification of the glass upon cooling, even when the glass is slowly and carefully annealed, is a most difficult factor to deal with. In annealing optical glass, the various temperatures and time periods have to be delicately adjusted and controlled, or big losses result. Even then many efforts may be made before a suitable piece of glass is obtained, and the costs keep accumulating with each attempt, and some idea of the amount The temperature of the furnace is controlled by regulating the draught by means of dampers in the main flues, arranged to act so as to carry out the annealing of the glass within the furnace. The regulation of the temperature within the furnace is of the greatest importance; if too hot the glass dissolves the clay of the pot, and if retarded too much it gives difficulty in freeing the metal from seeds, and plaining or fining the glass properly. Small furnaces containing one or two pots give the best results. These furnaces are worked on an intermittent process of first melting the glass and then gradually cooling to anneal the glass within the pots in mass, the furnace being allowed to die out gradually. When cool, the pots are broken away from the glass, which is then cleaved into lumps. Each lump is carefully examined for any defects and the best pieces selected for re-annealing. These are afterwards ground to the desired shape in the form either of a lens or prism. The chances are that not many pieces of perfect glass can be obtained from each pot of metal, and probably out of a whole pot only a fifth would be suitable for use after the process of selection and cleaving has taken place. In the manufacture of optical glass, batch materials are Before the war the optical glass trade was confined to a few firms in this country, who supplied only a fraction of our needs. We have been dependent mostly upon continental supplies of optical glass, and it is only quite recently that Government state assistance has been forthcoming in giving scientific aid to manufacturers by investigating and reorganising this section of the glass industry. It is to be hoped that this state assistance will continue, and that the optical branch of the glass trade will be perfected to such an extent that we may in future be independent, and produce for ourselves all the optical glass requirements of our |