The pots within which the raw materials are melted are set within a strongly heated chamber called the glass furnace. The old circular type of English furnace usually contains either six, ten, or twelve pots, and will be described first. The pots stand in a circle upon a form of hob called the “siege,” which constitutes the floor of the furnace. In the centre of this chamber and below the level of the siege is the “eye” of the furnace through which the flames come from the furnace fire below. The burning fuel is contained in a circular or cylindrical-shaped fire-box, about 4 ft. deep and 5 ft. in diameter, and is supported by a number of strong iron bars across the bottom of the fire-box. Passing under the fire-box, and across the whole width of the glass furnace, there is an underground tunnel called the “cave,” each end of which is exposed to the outside air, which is drawn in through the caves by the draught of the chimney cone above the fires. These caves are of sufficient height and width to allow the fireman, or “tizeur,” as he is called, to attend to the stirring of the furnace fires from time to time. Using a long hooked bar of iron, he rakes out the dead ashes and clinkers, as they are formed, and stirs the fire through the bars by prodding the fuel with a long poker. The coal is fed upon the furnace fire through a narrow mouth situated in the glass house leading into a chute which runs under the siege, from the glass house floor level towards the fire-box of the furnace. The fuel is pushed down this INTERIOR OF ENGLISH TYPE OF GLASS-MELTING FURNACE Above the siege and over the pots is a covering called the crown of the furnace, which is supported by fire-brick pillars. This is built of the most refractory material possible to be obtained, as the hottest flames from the furnace fires beat against this crown and are reverberated downwards upon the surrounding pots. The flames, continuing their course, pass between the pots into small openings or flues leading from the siege floor and passing upwards through the pillars which EXTERIOR VIEW OF ENGLISH GLASS-MELTING FURNACE The action of the glass upon the siege of the furnace is very active, and any leakage quickly destroys the blocks, leaving fissures which gradually increase in size until the blocks are eaten right through. Consequently, every care is taken to preserve the pots from losing metal. If by chance any pot develops a crack through which the metal leaks into the furnace, the glass working is ceased at that particular pot, and every endeavour is made to ladle out what remains of the metal, and so prevent any more running on to the siege and causing further mischief. The metal is ladled out of the pot by means of thick, heavy, iron spoons, with which the hot metal is scooped out of the pot and dropped into a large cauldron containing water. This is very exhausting work, but there In the old type of English furnace containing twelve pots, each 38 in. diameter and holding about 15 cwts. of metal, the furnace would be capable of melting 7 to 8 tons of glass a week, taking 40 tons of best fuel. The more up-to-date glass-melting furnaces are constructed upon a much better principle than the coal-fired old English type of furnace just described. These are usually producer gas-fired and give more economy and greater convenience in every way. Fig. A In these better types of modern furnaces some form of regeneration or recuperation of the waste heat is Fig. B As examples of the types of regenerative and recuperative furnaces, a description will be given of the Siemens Siegbert Gas-fired Regenerative Furnace and the Hermansen Recuperative Furnace for glass-melting, which are extensively used on the Continent and are giving remarkably good results. Fig. C In the Siemens Siegbert type, the furnace may be a rectangular or an oval-shaped chamber, approximately 18 ft. by 9 ft., the crown of which is about 4 ft. 6 in. high. No outer cone-shaped dome exists, and the pots within the chamber are arranged much closer together and practically touching each other round the furnace. The furnace chamber is heated by a mixture of producer gas and heated air, the gas being generated in an independent gas producer situated outside the glass house and some little distance away from the furnace. At either end of the furnace, beneath the floor of the siege, are two blocks of regenerators. These are deep rectangular chambers containing an open lateral arrangement of fire-brick chequers, through which the air or products of combustion pass on their way to or from the furnace. Port-holes are situated directly above these regenerators which lead the gases through the In practice, however, the regenerators are only used whilst the batch materials are being melted during the night, and by morning, when the metal is melted and “plain,” the heat is brought back, or retarded, by using the gas from the gas producers and cool atmospheric air under natural draught, instead of the regenerated hot air. This cooler mixture, naturally not being so active in combustion, maintains just sufficient temperature for working the metal out during the day. Later in the day, when the pots are emptied and refilled with batch, the regenerators are re-connected and the founding proceeds again through the night, and the metal is again got ready for the workmen coming in next morning. It will be seen that this method of melting and working out the metal does away with night work, the furnace man alone remaining in charge during the night. All firing is done outside the glass furnace room, which is well lighted, clean, and free from coal dust, totally different conditions from those existing in many English glass houses of to-day. A Siemens Siegbert furnace taking ten open crucible pots, and filled each day, turns out 15 to 18 tons of A MODERN GLASS HOUSE By the kindness of Messrs. Hermansen, the patentees, I am permitted to illustrate their Recuperative Glass-melting Furnace, eight pot type. HERMANSEN GLASS HOUSE FURNACE (EIGHT POT TYPE) Sectional Elevation. B The Hermansen furnace, like the Siemens furnace, is producer gas-fired. The gas producer is built within the body of the furnace, (P) below the glass house floor. On either side of this gas producer the recuperators are situated. These are constructed by an arrangement of tubes, designed to give two distinct continuous channels, the one horizontal and the other vertical. The vertical channels are connected with the atmosphere and supply the air necessary for combustion. The horizontal channels (R) are the flues through which the hot waste products of combustion are continually being drawn from the furnace by the stack. It will be C The Hermansen Continuous Recuperative Furnace is the most efficient furnace known to the writer. It is easier to control than the regenerative types. Being compact, it takes up little space and is easy to repair, and its life well surpasses other types. The initial outlay and cost of erection varies from £850 to £1,200. The combustion in this type of furnace is so perfect that it is used with open crucible pots for melting lead crystal glasses. On the Continent this furnace is in general use for all types of glassware, and, from the amount of glass it will melt, its efficiency is greater than the regenerative type. Tank furnaces are chiefly used for making the cheaper glasswares, such as wine, stout, and beer bottles, gum bottles, ink-pots, sauce bottles, and like goods, where a large production is essential. Improvements are continually taking place in the design of this type of furnace, and much finer and clearer metals are being produced. It is quite probable that in the future tanks will be preferred for making cast plate and sheet window glass, as a larger body of metal is held by them when compared with pot furnaces. Like the Siemens and Hermansen furnaces, they are gas-fired, but the port-holes by which the gas and air are introduced and the products of combustion are withdrawn from the melting chamber, are situated on either side, above the level of the metal, whilst the glass blowers work at one end of the furnace. The melting and working of the metal is continuous. The tank is divided by a shallow bridge, which is partially submerged and situated midway between the two ends of the furnace, dividing it into two sections, respectively the melting and working compartments. This bridge keeps back all unmolten material and allows only that portion which is melted to travel forward to the working compartment. The tank is crowned or arched over, and at the working end openings are provided to enable the glass workers to gather the metal from within. Small rings, or syphons, are used, Liquid fuel or oil-fired glass furnaces have not proved a success, being very costly in repairs on account of the local heating effects of the flames issuing from the burners vaporizing the oil. Electric furnaces for glass-melting have been tried with partial success. These are expensive in maintenance compared with their efficiency in producing glass. |