Until the Wright Brothers definitely solved the problem of flight and virtually gave the aeroplane its present place in aeronautics, there were three definite schools of experiment. The first of these was that which sought to imitate nature by means of the ornithopter or flapping-wing machines directly imitative of bird flight; the second school was that which believed in the helicopter or lifting screw; the third and eventually successful school is that which followed up the principle enunciated by Cayley, that of opposing a plane surface to the resistance of the air by supplying suitable motive power to drive it at the requisite angle for support. Engineering problems generally go to prove that too close an imitation of nature in her forms of reciprocating motion is not advantageous; it is impossible to copy the minutiae of a bird’s wing effectively, and the bird in flight depends on the tiniest details of its feathers just as much as on the general principle on which the whole wing is constructed. Bird flight, however, has attracted many experimenters, including even Lilienthal; among others may be mentioned F.W. Brearey, who invented what he called the ‘Pectoral cord,’ which stored energy on each upstroke of the artificial wing; E.P. Frost; Major R. Moore, and especially Hureau de Villeneuve, a most enthusiastic student of this form It may be that, as forecasted by the prophet Wells, the flapping-wing machine will yet come to its own and compete with the aeroplane in efficiency. Against this, however, are the practical advantages of the rotary mechanism of the aeroplane propeller as compared with the movement of a bird’s wing, which, according to Marey, moves in a figure of eight. The force derived from a propeller is of necessity continual, while it is equally obvious that that derived from a flapping movement is intermittent, and, in the recovery of a wing after completion of one stroke for the next, there is necessarily a certain cessation, if not loss, of power. The matter of experiment along any lines in connection with aviation is primarily one of hard cash. Throughout the whole history of flight up to the outbreak of the European war development has been handicapped on the score of finance, and, since the Hargrave, to diverge for a brief while from the machine to the man, was one who, although he achieved nothing worthy of special remark, contributed a great deal of painstaking work to the science of flight. He made a series of experiments with man-lifting kites in addition to making a study of flapping-wing flight. It cannot be said that he set forth any new principle; his work was mainly imitative, but at the same time by developing ideas originated in great measure by others he helped toward the solution of the problem. Attempts at flight on the helicopter principle consist in the work of De la Landelle and others already mentioned. The possibility of flight by this method is modified by a very definite disadvantage of which lovers of the helicopter seem to take little account. It is always claimed for a machine of this type that it possesses great advantages both in rising and in landing, since, if it were effective, it would obviously be able to These potential assets do not take into consideration the fact that efficiency is required not only in rising, landing, and remaining stationary in the air, but also in actual flight. It must be evident that if a certain amount of the motive force is used in maintaining the machine off the ground, that amount of force is missing from the total of horizontal driving power. Again, it is often assumed by advocates of this form of flight that the rapidity of climb of the helicopter would be far greater than that of the driven plane; this view overlooks the fact that the maintenance of aerodynamic support would claim the greater part of the engine-power; the rate of ascent would be governed by the amount of power that could be developed surplus to that required for maintenance. This is best explained by actual figures: assuming that a propeller 15 ft. in diameter is used, almost 50 horse-power would be required to get an upward lift of 1,000 pounds; this amount of horse-power would be continually absorbed in maintaining the machine in the air at any given level; for actual lift from one level to another at a speed of eleven feet per second a further 20 horse-power would be required, which means that 70 horse-power must be constantly provided for; this absorption of power in the mere maintenance of aerodynamic support is a permanent drawback. The attraction of the helicopter lies, probably, in the ease with which flight is demonstrated by means De la Landelle’s work, already mentioned, was carried on a few years later by another Frenchman, Castel, who constructed a machine with eight propellers arranged in two fours and driven by a compressed air motor or engine. The model with which Castel experimented had a total weight of only 49 lbs.; it rose in the air and smashed itself by driving against a wall, and the inventor does not seem to have proceeded further. Contemporary with Castel was Professor Forlanini, whose design was for a machine very similar to de la Landelle’s, with two superposed screws. This Later experimenters in this direction were Kress, a German; Professor Wellner, an Austrian; and W.R. Kimball, an American. Kress, like most Germans, set to the development of an idea which others had originated; he followed de la Landelle and Forlanini by fitting two superposed propellers revolving in opposite directions, and with this machine he achieved good results as regards horse-power to weight; Kimball, it appears, did not get beyond the rubber-driven model stage, and any success he may have achieved was modified by the theory enunciated by Berriman and quoted above. Comparing these two schools of thought, the helicopter and bird-flight schools, it appears that the latter has the greater chance of eventual success—that is, if either should ever come into competition with the aeroplane as effective means of flight. So far, the aeroplane holds the field, but the whole science of flight is so new and so full of unexpected developments that this is no reason for assuming that other means may not give equal effect, when money and brains are diverted from the driven plane to a closer imitation of natural flight. Reverting from non-success to success, from consideration of the two methods mentioned above to the direction in which practical flight has been achieved, it is to be noted that between the time of Le Bris, Stringfellow, and their contemporaries, and the nineties of last century, there was much plodding work carried out with little visible result, more especially so far as Penaud conceived this machine as driven by two propellers; alternatively these could be driven by petrol or steam-fed motor, and the centre of gravity of the machine while in flight was in the front fifth of the wings. Penaud estimated from 20 to 30 horse-power sufficient to drive this machine, weighing with pilot and passenger 2,600 lbs., through the air at a speed of 60 miles an hour, with the wings set at an angle of For three years longer he worked, experimenting with models, contributing essays and other valuable data to French papers on the subject of aeronautics. His gains were ill health, poverty, and neglect, and at the age of thirty a pistol shot put an end to what had promised to be one of the most brilliant careers in all the history of flight. Two years before the publication of Penaud’s patent Thomas Moy experimented at the Crystal Palace with a twin-propelled aeroplane, steam driven, which seems to have failed mainly because the internal combustion engine had not yet come to give sufficient power for weight. Moy anchored his machine to a pole running on a prepared circular track; his engine weighed 80 lbs. and, developing only three horse-power, gave him a speed of 12 miles an hour. He himself estimated that the machine would not rise until he could get a speed of 35 miles an hour, and his estimate was correct. Two six-bladed propellers were placed side by side between the two main planes of the machine, which was supported on a triangular wheeled undercarriage and steered by fairly conventional tail planes. Moy realised that he could not get sufficient power to achieve flight, but he went on experimenting in various directions, and left much data concerning his experiments which has not yet been deemed worthy of publication, but which still contains a mass of information Penaud and Moy were followed by Goupil, a Frenchman, who, in place of attempting to fit a motor to an aeroplane, experimented by making the wind his motor. He anchored his machine to the ground, allowing it two feet of lift, and merely waited for a wind to come along and lift it. The machine was stream lined, and the wings, curving as in the early German patterns of war aeroplanes, gave a total lifting surface of about 290 sq. ft. Anchored to the ground and facing a wind of 19 feet per second, Goupil’s machine lifted its own weight and that of two men as well to the limit of its anchorage. Although this took place as late as 1883 the inventor went no further in practical work. He published a book, however, entitled La Locomotion AÉrienne, which is still of great importance, more especially on the subject of inherent stability. In 1884 came the first patents of Horatio Phillips, whose work lay mainly in the direction of investigation into the curvature of plane surfaces, with a view to obtaining the greatest amount of support. Phillips was one of the first to treat the problem of curvature of planes as a matter for scientific experiment, and, great as has been the development of the driven plane in the 36 years that have passed since he began, there is still room for investigation into the subject which he studied so persistently and with such valuable result. At this point it may be noted that, with the solitary exception of Le Bris, practically every student of flight had so far set about constructing the means of launching humanity into the air without any attempt at ascertaining Of the age in which these men lived and worked, giving their all in many cases to the science they loved, even to life itself, it may be said with truth that ‘there were giants on the earth in those days,’ as far as aeronautics is in question. It was an age of giants who lived and dared and died, venturing into uncharted space, knowing nothing of its dangers, giving, as a man gives to his mistress, without stint and for the joy of the giving. The science of to-day, compared with the glimmerings that were in that age of the giants, is a fixed and certain thing; the problems of to-day are minor problems, for the great major problem vanished in solution when the Wright Brothers made their first ascent. In that age of the giants was evolved the flying man, the new type in human species which found full expression and came to full development in the days of the war, achieving feats of daring and endurance which leave the commonplace landsman staggered at thought of that of which his fellows prove themselves capable. It is not yet twenty years since man first flew, but into that twenty years have been compressed a century or so of progress, while, in the two decades that preceded it, was compressed still more. We have only to recall and recount the work of four men: Lilienthal, Langley, Pilcher, and Clement Ader to see the immense stride that was made between the time when Penaud pulled a trigger for the last time and the Wright Brothers first left the earth. Into those two decades was compressed the investigation that meant knowledge of the qualities of the air, together with the development of the one prime mover that rendered flight a possibility—the internal combustion engine. The coming and progress of this latter is a thing apart, to be detailed separately; for the present we are concerned with the evolution of the driven plane, and with it the evolution of that daring being, the flying man. The two are inseparable, for the men gave themselves to their art; the story of Lilienthal’s life and death is the story of his work; the story of Pilcher’s work is that of his life and death. Considering the flying man as he appeared in the war period, there entered into his composition a new |