Ascending from the two grand subdivisions of the animal kingdom, the Mollusca and the Articulata, we advance to the Vertebrata, animals distinguished from all those which have previously engaged our attention, by the possession of a bony, jointed, hollow column of support, or spine, formed of bones termed vertebrÆ (turn or whirl bones), and enclosing and protecting those strands or cords of the nervous In the beings whose mineralized remains form the subject of our present investigation, the durable parts of the frame-work, or skeleton, are, in most instances, situated internally, and their fossil relics consist principally of the bones, or solid earthy portions of their structures, either imbedded in the rocks in their natural relative position, or in a state of dismemberment and dispersion. In most cases the teeth, and in many the durable parts of their external integument, or skin, are also preserved, in a greater or less degree of integrity. In the lowest class of vertebrata, the Fishes, the skin is covered with numerous pieces or scales, of a dense, durable substance, and strengthened, in some families, by the addition of osseous plates; thus constituting a flexible and almost impenetrable coat of armour, which affords suitable protection to beings peculiarly exposed to external injuries, from the nature of the regions they inhabit, and the state of warfare with each other in which they are constantly engaged. Confined to a fluid medium, they are provided with organs fitted for aquatic respiration, called branchiÆ, or gills, and with instruments of progressive motion, termed fins, by which they are enabled to propel themselves through the water with great velocity. The apparatus for seizing, tearing, and crushing their prey presents numerous and important modifications, corresponding to the habits and economy of the different genera; their teeth offering as great variety of form and structure as those of the higher orders of animals. The cartilaginous or the osseous nature of the skeleton, and the number and position of the fins, were the characters formerly employed in the classification of Fishes; but Prof. Agassiz, conceiving the structure of the skin to afford a The living species of Fishes exceed eight thousand; and those found in a fossil state, and determined by M. Agassiz, already amount to upwards of one thousand five hundred; while several hundreds are still undescribed; and the rapid progress of geological research is continually adding to the number: upwards of six hundred British fossil species are enumerated. In an initiatory work like the present, it will be necessary to confine our remarks to an illustration of the mode in which the investigation of the fossil remains of the animals of this class should be conducted; and, by the elucidation of a few leading principles, prepare the student for the perusal of works expressly devoted to this branch of PalÆontology. The fossil remains of fishes rank in the first class of the "Medals of Creation," for they demonstrate the existence of numerous tribes of highly organized beings in some of the most ancient fossiliferous strata, and the continuance of the same type of organization, variously modified, through the entire series of subsequent deposits to the present time. Each geological formation contains peculiar groups of fossil fishes, distinguished by distinct modifications of structure. Thus, according to the data at present obtained, all the osseous fishes anterior to the Chalk belong to genera which have no representatives among existing species; and they are characterised by rhomboidal scales covered with enamel. The state of conservation in which the fossils of this class occur, appears to have depended on the relative delicacy or firmness of the original structures, and on the nature of the deposits in which the fishes were imbedded. Thus the fossil fishes of the early formations, which are characterised by their dense integument and enamelled scales, often present the entire forms of the originals, and generally considerable portions of the connected scales, with the fins and other appendages: while the specimens of later deposits, which contain a large proportion of species with delicate scales, more often display the mineralized osseous skeleton, than the dermal structure. Sedimentary strata composed of mud or fine detritus, of whatever age, have been most favourable to the preservation of the entire forms; hence we often find in the pulverulent clays and marls of the Tertiary strata, in the Chalk of England and Westphalia, and in the fine lithographic stone of Solenhofen, fishes perfect in form, and not only individuals, but groups, with the scales, fins, head, teeth, and even the capsule of the eye, in their natural positions. A small slab of marl from Aix, in Provence, in In illustration of this department of Paleontology, it will be expedient to consider,—1stly, the characters afforded by the scales and dermal appendages; 2dly, the teeth, or dental organs; 3dly, the osseous and cartilaginous skeletons; and lastly, apply the data thus obtained to the elucidation of some of the principal fossil genera and species. Scales of Fishes.—The dermal plates or scales are composed of two substances, disposed in laminÆ or plates; the one cartilaginous or horny,—the other dense and osseous, possessing the structure of bone. In most species the scales are imbricated, i. e. lie over each other like the tiles of a roof; the margin of a front row partly covering the series immediately behind. From this arrangement, the apparent shape of the scales is very different from their true form; the processes of attachment and the lateral angles being concealed. The scales that are not imbricated are either very small, and imbedded in the substance of the skin so as to be imperceptible to the naked eye, as in the shagreen of Sharks; or are disposed in the form of bosses or scutcheons, as in the Rays; sometimes bristling equally over the surface of the body, as in the Diodon; and sometimes covering it The four orders into which this grand class of vertebrata is divided by M. Agassiz, are founded upon the peculiar structure of the scales; Order I. Placoid (a broad plate).—The skin covered irregularly with enamelled plates, sometimes of a large size, but frequently in small points, as the shagreen on the dermal integument of the Sharks and the tubercles of the Rays. Lign. 185, fig. 1, a fossil placoidian scale from the skin of a shark, highly magnified. Order II. Ganoid (splendid, from the brilliant surface of the enamel).—The scales are of an angular form, and composed of plates of horn or bone, covered with a thick layer of enamel; their structure is identical with that of the teeth. The Sturgeon is an example of this order. Lign. 196, figs. 1, 2, 3, 4, are fossil scales of a ganoidian fish. Order III. Ctenoid (toothed, or comb-like).—The scales are formed of plates, which are toothed or pectinated on their posterior margin or edge, like a comb. As the plates are superimposed on each other, so that the lowermost always extend beyond the uppermost, their numerous sharp points or teeth render the scales very harsh to the touch. The Perch belongs to this order. Lign. 185, fig. 3, represents a fossil ctenoidian scale. Order IV. Cycloid (circular).—The scales are composed of simple laminÆ, or plates of bone or horn, without enamel, and have smooth borders; but their external surface is often ornamented with markings. The scales of the lateral line consist of funnels placed one within the other; the contracted part of which, applied against the disk of the scale, forms the tube through which the mucus flows. To this order belong the Mullet, Salmon, and Carp. Lign. 185, fig. 4, is the scale of a fossil cycloidian fish. Fins of Fishes.—As the progression of fishes through the water is principally effected by the action of the tail, they have no limbs commonly so called. The instruments for balancing the body, and for assisting progression, are the fins, which are composed of numerous rays that support a membranous expansion; and the number and situation of the fins present various modifications in the different orders and genera. The fins are named according to the situation they occupy; for example, pectoral, those on each side of the chest, and which correspond to the anterior extremities of other vertebrated animals; dorsal, on the back; ventral, on the belly; caudal, on the tail. (See outlines of Fish, Ligns. 186, 187, 195.) The rays are of two kinds; 1st, the Spinous rays; these consist of a single osseous piece, usually dense and pointed, sometimes flexible and elastic, and divided longitudinally (Ligns. 188, 196); 2d, Soft or articulated rays, which are composed of numerous small articulations or joints, and divide into branches at their extremities. Many species of fishes have four fins; others six; some but two; and in certain genera they are altogether wanting. In a fossil state the fins are often beautifully preserved; even the soft rays in many of the Tertiary marls and in the Chalk, are found entire, and attached to the body in their natural situation. The large, strong, spinous rays of the dorsal fins of the cartilaginous fishes, as the Sharks and Rays, are generally found detached, or connected only with a few vertebrÆ; but they are so abundant in some of the Secondary deposits (and in numerous instances they are the only vestiges of extinct species and genera), that they possess great geological interest; they are distinguished by the term Ichthyodorulites (fossil fish-weapons), under which head they will hereafter be described (see Lign. 188). The first ray in the dorsal fin of some fishes is protected in front by a double Teeth of Fishes.—Of all the durable parts of animals teeth occur in the mineral kingdom, the teeth of fishes present by far the most numerous, varied, and striking modifications of form, structure, composition, mode of arrangement, and attachment; and yet these dental organs, separately considered, do not in many instances, either in their structure or mode of implantation, afford characters by which the natural affinities of the original can be satisfactorily ascertained; and without the aid of other parts of the skeleton it is often impossible to determine, from external characters only, whether an unknown form of tooth belonged to an animal of the class of Fishes or of Reptiles. Although the modifications of form are almost innumerable, they are referable to four principal types; namely, the conical, the flattened, the prismatic, and the cylindrical. The conical teeth are extremely variable in size and form; some are slender, almost invisible points, distributed like the pile of velvet (villous-teeth), or set like the hairs of a brush (brush-teeth); some are long and slender, or barbed at the point; others are obtuse; and many are long and striated at the base, and closely resemble the teeth of certain reptiles. The depressed teeth are equally diversified; some have the grinding surface smooth; others, deeply grooved; in some it is flat; in others convex. In form they are either lozenge-shaped, elliptical, square, oblong, semilunar, &c. The cylindrical teeth are hemispherical, or flattened; in some fishes they are short and thick; in others slender and support an obtuse, conical crown. The prismatic form The mode of arrangement and attachment of the teeth, is as diversified as their forms. In some species all the teeth are of one type, and disposed in somewhat of a serial order on both sides of the jaws; but in a large proportion of fishes there are several kinds of teeth, which are implanted not only in the jaws, properly so called, but on the bones which form the cavity of the mouth, the arches of the palate, tongue, &c.; and it is peculiar to this class of vertebrata to present examples of teeth developed in the median line (along the middle) of the mouth, as in certain species of Rays; or crossing the symphysis (the front line of union of the two sides) of the lower jaw, as in Myliobates The teeth are composed of a dense, osseous material, of a finely tubular structure, termed dentine; which, in many species, forms on the external surface of the tooth a layer of Skeletons of Fishes.—The skeletons of the animals of this class differ so remarkably in their relative degree of firmness and elasticity, in consequence of peculiar modifications of their constituent substance, as to form two grand divisions; one of which is termed the osseous, the other the The skeleton consists of the cranium or skull, which is composed of numerous bones,—the jaws, and bones of the tongue,—the osseous frame-work of the organs of respiration, consisting of the bones, rays, and arches that support the gills, and the opercula, or covers which close over the branchial apertures,—and of the vertebral column, formed of numerous dorsal and caudal vertebrÆ, with the ribs and other appendages; there are no proper cervical vertebrÆ, or spinal bones of the neck. The branchial arches are in general four or five on each side, and are attached above to the cranium, and below to a chain of small bones, by which they are connected with the os hyoides, or bone of the tongue. The opercular bones, composing the cover or lid of the opening of the gills, consist of three pieces on each side, and are distinguished by the names, opercular, pre-opercular, and sub-opercular, according to the situations which they respectively occupy. The vertebrÆ are double hollow cones, There are likewise bones analogous to some of those which enter into the composition of the extremities, chest or thorax, and pelvis of the higher vertebrata; but which it is not necessary for our present purpose here to describe. Of the organs of vision some fossil remains also occur. The sclerotic coat, or capsule of the eye, being bony in fishes, is often preserved; and in several chalk specimens I have found it occupying the orbit. In addition to those durable parts of fishes, already mentioned, as likely to be met with in a fossil state, the bones called otolithes (ear-stones) must be enumerated. These calcareous bodies are found in the membranous labyrinth of the organs of hearing; and, although more or less developed in the ear-bulb of all animals, they are larger and of more definite forms in the higher osseous and cartilaginous fishes. The otolithes are supposed to assist in communicating more vivid impressions of sounds to the extremities of the auditory nerves; they are stony in most aquatic animals, and friable or pulverulent in those that live on land. Smooth, oblong otolithes are not uncommon in the Crag deposits of Norfolk and Suffolk; and minute ear-bones are found in the Barton Clay. Tails of Fishes.—The tail, as we have previously mentioned, In the Annals of Nat. Hist, for 1848, p. 304, Prof. M’Coy has described and figured an intermediate form of tail, which he regards as characteristic of the Diplopterus (of the Old Red Sandstone) and its allies: this the Professor terms the Diphycercal tail. From this brief summary of the essential characters of those durable parts of the organization of fishes, which most frequently occur in a fossil state, we pass to the investigation of some illustrative examples of this class of organic remains. But before describing any entire specimens, it will be expedient to notice the separate fins, and teeth, which abound in many deposits; in some instances occurring in connexion with other parts of the skeleton, but more generally detached, and constituting the only evidence of the existence of numerous extinct species and genera. The greater part belong to the first order—the Placoidians (Poiss. Foss. tom. iii.), and to the families of Sharks and Rays. The osseous dorsal rays of cartilaginous fishes (named Ichthyodorulites (fossil-fish-weapons) by Dr. Buckland and Sir H. De la Beche) first demand our notice. Ichthyodorulites. Lign. 188.—This name is applied These spines are generally capable of being elevated and depressed, and not only serve the purpose of defence, but, in many instances, afford support and protection to the soft rays of the fin; forming, as it were, a moveable mast, by which the sail can be spread out or lowered at pleasure. In illustration of this subject, I would first direct attention to the beautiful fossil, figured Lign. 188, fig. 1, which was discovered in the Chalk near Lewes, and is figured, of the natural size, Foss. South D. tab. xxxix. This ray, or spine, belongs to one of the Cestraciont fishes (Ptychodus), whose teeth are so abundant in the Chalk, and will presently be described. It is composed of fourteen thick, flat, osseous rods, or strands, intimately united together, with longitudinal furrows or sutures on the surface. The anterior margin is embossed, and the projections form on the sides wide, rounded ribs, and transverse depressions. Towards the base of the posterior part, there are large osseous In 1850 I discovered in the Plastic Clay of Castle Hill Newhaven, a dorsal fin of Ptychodus, with eight vertebrÆ. A nearly entire fin-ray of this species, three feet in length, A smaller species of Ichthyodorulite, also found in the Lewes Chalk, is distinguished from P. spectabilis by its osseous plates contracting towards their extremities, and terminating more suddenly on the front margin, producing gibbosities less acute and more distant than in P. spectabilis; this species is named P. gibberulus: see Lign. 188, fig. 2. The bony plates of these fins are occasionally found lying in irregular groups in the Chalk, as if the fin had partially decomposed and the plates separated. In one example, the rays are split asunder by a piece of bone, apparently a portion of a long pointed tooth, firmly impacted between them; as if the fish had been seized by some enemy, and had escaped, with the tooth of its adversary in its fin. Very fine specimens have been found at Charing, Kent, by W. Harris, Esq. F.G.S. In the fragment of an Ichthyodorulite from the Lewes Chalk, a remarkable structure is displayed; the osseous plates are united laterally by smooth, longitudinal lines, as in those above described; but they are also traversed by numerous oblique, finely-serrated sutures. Lign. 188, fig. 1a. The Chalk contains rays of other species of Ptychodus, as well as of some allied genera. Of these, the most remarkable are smooth, arched, pointed spines, having a shallow posterior groove, with an enamelled surface, marked with fine longitudinal striÆ, and frequent, parallel, oblique lines. These, according to Sir P. Egerton, belong to a true It may be necessary to remark, that the fins first described have been referred to the fishes which yielded the large grooved teeth so common in the Chalk (see Hybodus subcarinatus. Lign. 188, fig. 3.—The fishes of another extinct genus of Sharks, termed Hybodus, from the gibbous form of the teeth, were also provided with dorsal spines, which may be readily distinguished from the preceding. These Ichthyodorulites are generally long, slightly arched, and terminate in a point at the extremity; the base, which was implanted in the flesh, is deeply grooved, and much prolonged, being sometimes equal to one-third of the entire length. The surface is marked with strong longitudinal ridges, parallel with the anterior margin which is rounded and laterally compressed. The posterior edge, which is more or less flat, has, towards the base two rows of sharp arched teeth, which gradually approach ’each other, and blend into one line on the upper part of the ray There are numerous species of this genus in the Oolite and Lias. I have found one species in the Chalk and a few in the Wealden. The small Ray figured Lign. 188 fig. 3, is from Tilgate Forest, and displays the usual characters of these fossils. From specimens discovered in the The microscopic structure of these rays is stated by M. Agassiz to resemble that of the teeth: in some there is a pulp cavity, which occupies the centre of the spine, and is surrounded by dentine, in which the calcigerous tubes radiate direct to the surface; the external enamel is a layer of dentine, in which the medullary canals are wanting. In the strata below the Lias there are numerous Ichthyodorulites, some of a large size, belonging chiefly to the Cestracion family, and of extinct species, not observed in more recent deposits. Thus there are several species of dorsal rays (named Onchus, from their hooked form,) that are wide at the base, and bent backwards, with the posterior margin destitute of teeth, in the Carboniferous, Devonian, and Silurian formations; also immense compressed spines, having small teeth on the posterior margin, and the surface covered with longitudinal striÆ, and finely toothed, transversely; hence termed Ctenacanthus, or pectinated-spine (Murch. Sil. Syst. p. 596). The fossil spine, named Orthacanthus (Poiss. Foss. vol. iii. pl. xlv.), and found in the Coal of Manchester, has been discovered in connexion with the body of the fish to which it belonged in the Carboniferous deposits of Ruppersdorf in Bohemia (Geol. Journal, vol. v. part ii. p. 23). Some Ichthyodorulites have the surface richly ornamented with stellular tubercles, and are termed Asteracanthus, or starry-spine; there are very large fin-rays of this kind in the Wealden, Purbeck, Oolites, and Lias. The Ichthyodorulites of the Rays have no cavity like those of the Sharks, and are of a depressed form, and more or less flattened; they are armed with teeth along their Fossil Teeth of Fishes.—From the durable nature and striking appearance of many of the fossil teeth of fishes, and their prodigious numbers in some deposits, they are familiar objects to the collector. By far the largest proportion of the detached teeth belongs to various species and genera of that most numerous, and widely distributed family of voracious fishes, the Sharks. In the Tertiary strata teeth of this kind occur of a very large size; in the Chalk many species abound, particularly of the lanceolate and compressed forms, and of the rugous, mammillated, palatal teeth, commonly termed palates. As we pass to the more ancient formations, teeth of different forms prevail; and those which approach the recent types are either very rare or altogether absent. We will select some examples of the different genera in illustration of this subject; the previous observations on the form and structure of the recent teeth render but few introductory remarks necessary. Fossil Teeth of Sharks.—The fishes of the Shark and Ray families belong to the Placoid order; the scales in the former consist of enamelled plates and tubercles, forming a shagreen surface; and in the dermal integument of the latter they appear as spines and bosses, irregularly disposed. Notwithstanding the diversity in appearance of the teeth of Sharks, they all possess one essential character of structure, namely, a base, or osseous root of variable form, which is implanted in the integuments; and a crown, or external portion, which projects into the mouth, is covered with enamel or compact dentine, and assumes numerous modifications, by which the fossil genera are characterized. These teeth are never imbedded in sockets, nor united to the dentary margins of the jaws; they only adhere to the integuments of the mouth, and the covering of the maxillÆ; they possess, in most of the Sharks, great mobility. They The fossil teeth of this family may be divided into two grand divisions; namely, those which are more or less of a polygonal, obtusely conical, or depressed form, having a tesselated arrangement in the mouth; and those of a triangular, lanceolate shape, with cutting, or serrated edges, disposed in a series of rows on the jaws. The teeth of the first group (CestracionidÆ) have most analogy to those of the living genus Cestracion (Port-Jackson Shark); the second (SgualidÆ) to the Sharks, commonly so called. The Cestracion is the only living representative of a family of squaloid fishes of a peculiar type, whose remains occur in almost the earliest fossiliferous deposits; it inhabits the seas of New Holland and the southern coasts of China. The jaws of the Cestracion are relatively very large, and are armed with numerous rows of teeth, essentially of two kinds; those situated anteriorly, or towards the front of the mouth, being adapted for seizing and retaining the food, and the posterior ones for crushing and bruising. The prehensile teeth are sharp, angular, and pointed: the others are obtuse, polygonal, enamelled, and disposed in oblique rows along the margins and inner surface of both jaws; there are sometimes sixty in each jaw (see Bd. ii. pl. xxvii 11. fig. A). Fossil teeth of this type are exceedingly numerous in the Chalk, Lias, &c. but are very seldom found in juxtaposition; The extinct forms of this family (CestracionidÆ) are known almost only by their teeth; and according to the shape, structure, and sculpture of these organs, M. Agassiz has arranged them into several genera. They occur in most of the fossiliferous deposits. Cestracion canaliculatus.—The teeth of a fish belonging to the existing genus have been discovered in the Chalk of Kent; they are figured and described by Sir P. Egerton in the beautiful work by Mr. Dixon. Acrodus (ridge-tooth) nobilis. Lign. 189, fig. 4, Ly. p. 275, fig. 307.—In the Lias and Oolite, oblong enamelled teeth, having the surface of the crown covered with fine radiating grooves and striÆ, are well known to collectors, in many parts of England, by the name of fossil leeches, from a fancied resemblance to a contracted leech. They belong to an extinct genus of Cestracionts, named Acrodus by M. Agassiz. The crown of the tooth is enamelled, and covered with transverse grooves, which diverge from a longitudinal furrow; the base is in the form of a parallelogram inclined on its inner side. These teeth were inserted along the Ptychodus (wrinkle-tooth). These teeth are of an angular form, and more or less square, the crown is wider than the root, which is obtuse, truncated, and depressed in the centre; the enamelled part of the tooth is expanded at the edges, and forms in the centre a flattened or slightly convex mammillary projection, which is traversed by large, acute, transverse, parallel ridges. The borders are granulated, and the sides of the projection marked with deep vertical plicÆ or folds; this description particularly applies to the species named P. polygurus, figured in The microscopic structure of these teeth presents the same congeries of medullary and calcigerous tubes as those of the recent Cestracion: see The teeth of a species of Ptychodus occur in the arenaceous strata of the Chalk-formation in New Jersey, which possess the essential characters of the European types, but differ from them in their configuration; the only specimen I have seen is figured Lign. 189, fig. 1; it was presented to me by Dr. Morton. The enamelled crown forms a conical projection, traversed by large inosculating ridges, which radiate from the summit towards the margin. Psammodus There are several kinds of fossil teeth which possess the same essential structure as those of Psammodus, but differ in their external characters; these are referred to other genera by M. Agassiz. Thus Orodus, Lign. 189, fig. 3, comprises those elongated teeth in which the centre of the crown forms an obtuse transverse cone, traversed by a ridge from which oblique furrows diverge transversely towards the circumference. Similar teeth, but with a smooth, obtusely conical crown, are referred to the genus Helodus. Those with the crown compressed and elevated, with a sharp edge, and with the base surrounded by concentric folds, constitute the type of Chomatodes. A similar crown, but subdivided by deep transverse ridges into dentations, characterises the genus Ctenoptychius. Ceratodus (horn-tooth) emarginatus. Lign. 194, fig. 1.—Very curious dental organs, possessing a structure analogous to that of the teeth of Psammodus, are found in the One species occurs in the Great Oolite at Stonesfield, and very many forms abound in the Bone-bed at Aust Cliff, near Westbury on Avon: and in the Trias (bone-bed) of Germany the teeth of several species of Ceratodus are very abundant. The fishes to which these fossil teeth, referred to Ceratodus, belonged were most probably Cestracionts; the ray-spine known as Nemacanthus is provisionally assigned to them. Edaphodon. Lign. 190 and Lign. 191, Ly. p. 276, fig. 309.—The ChimÆroid fishes, though formerly placed with the Plagiostomes (Sharks and Bays), constitute a distinct group, of which there are but two recent genera, though several occur in a fossil state. Their dental organs are very peculiar. Their mandibles are furnished with two or more pairs of oblong teeth, composed of long hollow cylindrical columns, placed nearly at right angles to the grinding surface, which is pitted with minute depressions. These teeth are never shed, but are persistent, and grow on through life, as in the Rodentia, exhibiting in this respect a striking contrast with those of the Sharks, which are feeble and numerous, and constantly replaced by rows of successional teeth. Fossil teeth of several species, some much larger than the recent, have been found in the Tertiary, Cretaceous, and Oolitic deposits. The first British specimen was discovered in the Chalk-marl at Hamsey, in 1820, by myself; but its Many specimens, both of the upper and lower mandibles, have since been discovered in the Eocene beds, Chalk, Upper Greensand, Galt, Kimmeridge Clay, and Stonesfield Slate. The subject has been carefully investigated by Sir P. Egerton; and this eminent Ichthyologist has tabulated the principal forms, and arranged them under five genera. In some species the external vertical wall of the plate is formed of hard dentine, resembling enamel; in others the dentine is disposed in isolated ramifications, producing a dendritical appearance; the modifications of this structure occasion the differences observable in the dental plates of the various species. In some, compact dentine with parallel canals constitutes the mass of the tooth; in others, the squamous dentine with ramifying tubes prevails. I have figured the right upper and lower mandibles of the type named Edaphodon (pavement-tooth), in which there are three teeth or dental tubercles on each ramus of both jaws, Lign. 191: the lower mandible is produced anteriorly into a falciform beak: The upper jaw in Elasmodus has but three tubercles, as in Edaphodon, but the dentine of which they are composed is confluent, being rolled round like a scroll in the substance The dorsal fin-ray or spine of the Edaphodon is laterally compressed, with the posterior margin grooved, and the edges armed with fine teeth: I have a specimen of the spine, with a pair of inferior mandibles of the same individual, imbedded in a block of chalk from Kent; by favour of Mrs. Smith, of Tunbridge Wells. Hybodus. Lign. 192, figs. 1, 2. (Bd. pl. xxviid.)—Intermediate between the obtuse crushing teeth of the Sharks previously described, and those sharp, angular, pointed, dental organs of the Squaloids, are those of the fishes which M. Agassiz has arranged in a sub-family or group termed Hybodonts; the teeth of which are characterised by their transversely elongated form, and the series of subacute, compressed, conical cusps or points, which compose the crown. The median cone is the principal, the lateral Sharks with Cutting Teeth.—The jaws of the common squaloid fishes, as the Lamna (Porbeagle) and Carcharias (Great White Shark), are so common in collections of natural history, as to render a description unnecessary. The numerous vertical rows of angular, laterally compressed, pointed teeth, with sharp or serrated edges—in some species consisting of a simple trenchant cusp, in others with small lateral teeth, or denticles, at the base, are characters with which all are familiar. Fossil teeth of this form are extremely Carcharodon productus. Lign. 192, fig 3.—The genus Carcharias comprises the large Sharks with cutting triangular teeth, crenated (notched) on their margins, and having a broad base. In Carcharodon, the teeth differ from those of Carcharias in being solid in the centre, while in the latter they are hollow; but in both genera the teeth exhibit the same reticulated structure of medullary and calcigerous tubes. The White Shark and other large species belong to these genera; some of which are upwards of forty feet in length. But even these colossal fishes must have been far surpassed in magnitude by the extinct species of the Tertiary deposits, if the teeth afford a scale of proportions; for some of the fossil teeth from Malta and the United States are six inches long, and five wide at the base; Hemipristis serra. Lign. 192, fig 4.—The fossil teeth of this genus are distinguished by serrated edges, that do not extend to the summit, which is a sharp angular point; as in the fossil represented. Lamna elegans. Lign. 193, fig. 6.—The fishes of the genus Lamna (to which the recent shark called the Porbeagle belongs) have teeth with smooth trenchant edges, and a small sharp denticle (little tooth) on each side the base, as in the fossil, Lign. 193, fig. 6. The specimen, fig. 2, although devoid of denticles, probably belongs to the same genus, for reasons already explained. Several species abound in the Chalk; and they are associated with teeth, which are relatively wider and shorter, and have large compressed denticles; the latter are arranged in a separate genus, named Otodus (eared-tooth), by M. Agassiz. The specimen figured Notidanus microdon. Lign. 193, fig. 3.—These teeth differ remarkably from those of the other genera of Sharks. The crown of each tooth is composed of a series of sharp angular enamelled points, the first of which is the largest, and is notched on its anterior edge; the base or root is osseous, flat, with a slight longitudinal depression below the border of enamel. These teeth are comparatively rare in the Chalk. One species has been found in the Oxford Clay; and several in the Tertiary strata. Specimens occur in Hordwell Cliff. Corax pristodontus. Lign. 193, fig. 1.—The teeth of the fossil Corax chiefly differ from those of the recent genus Galeus, to which the Tope, or Grey Shark, belongs, in being solid; they are of a triangular form, with a deep concavity or notch on the posterior margin, the base of which is prolonged and forms three or four angular points: the anterior edge of the tooth is finely serrated. The root of the tooth, as in Notidanus, is a broad osseous plate. There is much diversity of form in the Chalk specimens, which are all of a small size, as in Lign. 193, fig. 1. In Sussex they are more common in the Chalk-marl than in the Chalk. The only fossil teeth of the Shark family resembling those of the tertiary Carchariodonts, that have been discovered in the strata below the Chalk, are from the carboniferous deposits of Yorkshire and Armagh. These teeth are compressed, triangular, crenated on the edges, with large plaits or folds on the enamelled surface, towards the base of the crown. M. Agassiz refers them to a new genus, viz. Carcharopsis, with the specific name of Prototypus. Fossil VertebrÆ of Sharks.—As the cartilaginous nature of the skeleton in this family renders it unfavourable to preservation in the mineral kingdom, the durable parts already described, and those which are ossified, are almost the only relics found in a fossil state. The dermal integument is, however, sometimes preserved; and I had a beautiful example of shagreen, composed of irregular minute hexagonal scales, one of which is represented highly magnified, Lign. 185, fig. 1. In the Galeus and Carcharias the vertebrÆ are more ossified than in many other genera of cartilaginous fishes, and fossil vertebrÆ of these sharks often occur in the cretaceous and other strata. Groups of vertebrÆ of a large size occasionally occur in the Sussex Chalk; they are circular, biconcave, and very short; one specimen is four inches in diameter, and one inch long; their concavities are consequently shallow. These vertebra: are composed of two shallow conical disks, which are united by their summits, at the axis, and are connected and supported by numerous wedge-shaped plates, that radiate from the centre to the periphery (see Foss. South D. pl. xxxiii. fig. 10). My collection contained a connected series of forty small vertebrÆ from the Chalk near Lewes, which probably belonged to the same species of Shark as the dorsal spine named Spinax major (Poiss. Foss. tom. iii. pl. xla fig. 6). Squaloraia. In the Lias of Lyme Regis, that inexhaustible storehouse of fossil treasures, a considerable portion of the skeleton of a very remarkable fish, partaking of the characters of the Sharks and Rays, was discovered by Miss Mary Aiming, and is now in the Museum of the Bristol Institution. Fossil Pristis, or Saw-fish.—This well-known predatory fish, which is allied to the Rays and Sharks, and referred by M. Agassiz to the family of RaiidÆ, has projecting from its snout an osseous, flat, horizontal plate, or beak, equal in length to one-third of the fish, and armed on each side by a row of elongated, compressed, pointed teeth, implanted in sockets; the front margin of these teeth is convex, the posterior concave; this defence is termed the saw, and constitutes a most powerful weapon. The Pristis has also numerous small obtuse teeth on the jaws. The remains of the beak, or saw, of an extinct species of Pristis have been discovered in the Bagshot Sand at Goldsworth Hill, Surrey, Fossil Rays.—The teeth of these fishes are characterised by the extraordinary transversal development of the median teeth in both jaws. Instead of pointed teeth, they have wide, flat, tesselated dentary plates in each jaw, composed of distinct pieces, juxtaposed and connected by their margins, and united by fine sutures. In some species the teeth are equal, in others of various sizes; they present numerous modifications of arrangement, and are always disposed in symmetrical rows. In the genus Myliobatis (Eagle-ray) the teeth of the median row are of an extraordinary width, while their length does not exceed that of the lateral plates, or chevrons, which are of an irregular hexagonal form, and disposed in two or three rows on each side. There are five living species of Myliobatis, and eighteen fossil species have been found in the Tertiary strata at the Isle of Sheppey, To this notice of the fossil Rays, we may add, that a gigantic Torpedo has been discovered in that celebrated |