Much progress has been made during the last hundred years in our knowledge of the planets. In fact, the study of Mercury only dates from the commencement of the nineteenth century. Our knowledge of the vicinity of the Sun is very limited, and Mercury is difficult of observation. So limited, in fact, is our knowledge of the Sun’s surroundings, that it is not yet known for certain whether there is a planet, or planets, between Mercury and the Sun. Perturbations in the motion of the perihelion of Mercury’s orbit led Le Verrier in 1859 to the belief that a planet of about the size of Mercury, or else a zone of asteroids, existed between Mercury and the Sun. It was, however, obvious that such a planet could only be seen when in transit across the Sun’s disc, or during a total eclipse. Meanwhile a French doctor, Lescarbault, informed Le Verrier that he had seen a round object in The study of the physical appearance of Mercury was inaugurated by SchrÖter, who in After the time of SchrÖter there was no astronomer who paid much attention to either Mercury or Venus until the arrival on the scene of the most persistent planetary observer and one of the foremost astronomers of the nineteenth century. Giovanni Virginio Schiaparelli was born at Savigliano, in Piedmont, in 1835, and graduated at Turin in 1854. Called to Milan as assistant in the Brera Observatory in 1860, he became director in 1862, and there for thirty-eight years he studied astronomy in all its aspects, making a great name for himself in various branches of the science. In 1900 he retired from the post of director, and pursues his astronomical researches in his retirement. In 1882 Schiaparelli took up the study of Mercury in the clear air of Milan. Instead of observing the planet through the evening haze, like SchrÖter and others, he examined it by day, Schiaparelli’s conclusions remained until 1896 unconfirmed and yet not denied, although most astronomers were sceptical on the subject. In 1896 the subject was taken up by the American astronomer, Percival Lowell (born 1855), who, in the clear air of Arizona, confirmed Schiaparelli’s conclusions, fixing 88 days as the period of rotation. He remarked, however, that no signs of an atmosphere or clouds were visible to him. The surface of Mercury, he says, is colourless,—“a geography in black and white.” The determination Venus, the nearest planet to the Earth, has been attentively studied for three centuries, and still comparatively little is known regarding it. This is due to its remarkable brilliancy, combined with its proximity to the Sun. The great problem at the beginning of the nineteenth century was the rotation of the planet. In 1779 the subject was taken up by SchrÖter at Lilienthal. Nine years later, from a faint streak visible on the disc, he concluded that rotation was performed in 23 hours 28 minutes, and in 1811 this was reduced by seven minutes; In 1877 the question was attacked by Schiaparelli, who commenced a series of observations The announcement was so startling that, as Miss Clerke says, “a clamour of contradiction was immediately raised, and a large amount of evidence on both sides of the question has since been collected.” Perrotin at Nice, Tacchini at Rome, Cerulli at Teramo, Mascari at Catania and Mount Etna, and Lowell in Arizona, all in favourable climates, confirmed Schiaparelli’s results, as also did a second series of observations by the Milan astronomer himself in 1895. On the other hand, Neisten, Trouvelot, Camille That Venus has an atmosphere was one of the conclusions reached by SchrÖter in 1792; and in this at least he was correct, as the atmosphere of Venus, illuminated by the solar rays, has been seen extending round the entire disc of the planet. Spectroscopic observations by Tacchini, Ricco, and Young, during the transits of 1874 and 1882, indicated the existence of water-vapour in the planet’s atmosphere. Very little has been discovered regarding the “geography” of Venus. White patches at the supposed “poles” of the planet were observed in 1813 by Franz von Gruithuisen, and in 1878 by the French astronomer Trouvelot (1827-1895). The secondary light of Venus, similar to the “old Moon in the new Moon’s arms,” was repeatedly observed since the time of SchrÖter The study of our own planet can hardly be said to belong to the realm of astronomy. Nevertheless, it is through astronomical observation that the motion of the North Pole has been discovered. For many years it has been a problem whether there is a variation of latitude resulting from the motion of the pole. Euler had declared, from theoretical investigation, that, were there such a motion, the period must be 10 months. The question was revived in 1885 by the observations of Seth Carlo Chandler (born 1846) at Cambridge, Mass., with his newly-invented instrument, the “almucantar,” which indicated an appreciable variation of latitude. This was confirmed by Friedrich KÜstner (born 1856), now director of the Observatory at Bonn. The idea now occurred to Chandler to search through the older records Of all the planets Mars has been most studied during the nineteenth century. Many illustrious astronomers have devoted years to the study of the red planet, with the result that more is known of the surface of Mars than of any other celestial body, with the exception of the Moon. After the time of Herschel, the leading students of Mars were Beer and MÄdler, who carefully studied the planet from 1828 to 1839. They identified at each opposition the same dark spots, frequently obscured by mists, and they also made the most accurate determination of the rotation period, which they fixed at 24 hours 37 minutes 23 seconds. This estimate was confirmed in 1862 by Friedrich Kaiser (1808-1872) of Leyden, in 1869 by Richard Anthony Proctor (1837-1888), and in 1892 by Henricius Gerardus van de Sande Bakhuyzen (born 1838), director of the Leyden Observatory. In 1862 Lockyer identified the various markings seen by Beer and Madler in 1830. The other great names in Martian study prior to 1877 are Angelo Secchi and William Rutter Dawes (1799-1868), who studied Mars from 1852 to 1865 and secured a very valuable series of drawings. These drawings were used by Proctor for the construction of the first reliable map of Mars, which was published in 1870 in his work, ‘Other Worlds than Ours.’ In 1894 Percival Lowell erected at Flagstaff, Arizona, an observatory for the specific purpose of observing Mars and its canals in good and steady air. He was assisted by W. H. Pickering and by Andrew Ellicott Douglass (born 1867). During a year’s study Douglass measured the Martian atmosphere and discovered canals crossing the dark regions of the planet, finally disproving the idea of their aqueous character. Lowell recognised all Schiaparelli’s canals, and discovered many more. He also attentively studied the south polar cap of Mars, which disappeared entirely on October 12, 1894. Lowell noticed, also, that as the cap melted the canals became darker, as if water was being conveyed down; and accordingly he adopted the view put forward by Schiaparelli, that the canals are waterways lined on either side by banks of vegetation. His observations were published in the end of 1895 in his work ‘Mars.’ He is of opinion that the reddish-ochre regions or “continents” are deserts, and the greenish areas marshy tracts of vegetation. The lakes are named by him “oases,” and, as Miss Clerke observes, he “does not shrink from the full Lowell’s theory has not been cordially received—although it is now gradually gaining popularity,—and several other hypotheses have been propounded to explain the canals. Proctor, who died some years before Lowell’s theory was given to the world, regarded them as rivers, but this view may now be looked upon as abandoned. It was suggested that the canals might be cracks in the surface of Mars or meteors ploughing tracks above it: and Professor John Martin Schaeberle (born 1853) of the Lick Observatory put forward the view that the canals were chains of mountains running over the light and dark regions. None of these theories, however, gained Meanwhile the old-fashioned Martian observations have been continued in less favourable climates than Arizona and Italy by various astronomers, among them the famous Camille Flammarion, the American astronomers James Edward Keeler (1857-1900), Edward Emerson Barnard (born 1857), the English astronomer W. F. Denning, and others. These conscientious and painstaking observers have done much for Martian study in increasing the number of accurate delineations of the Martian surface. The spectrum of Mars was first examined by Huggins in 1867. He found distinct traces of water-vapour, and this was confirmed by Vogel in 1872, and by Maunder some years later. In 1894, however, William Wallace Campbell (born 1862), the American astronomer, observing from the Lick Observatory, California, was unable to detect the slightest difference between the spectra of Mars and the Moon, indicating that Mars had no appreciable atmosphere; and from this he deduced that the Martian polar caps could not be composed of snow and ice, but of frozen carbonic acid gas. In 1895, however, Vogel confirmed his During the opposition of 1830, MÄdler undertook an extensive search for a Martian satellite, but was unsuccessful. In 1862 the search was resumed by Heinrich Louis D’Arrest (1822-1875), the famous German observer, who was also unsuccessful. Accordingly the red planet was referred to by Tennyson as the “moonless Mars.” In 1877 the search was taken up by Asaph Hall, the self-made American astronomer, born at Goshen, Connecticut, in 1829, and employed from 1862 to 1891 at the Naval Observatory, Washington. During the famous opposition of August 1877, favoured by the great 26-inch refractor, he succeeded in discovering two very small satellites of Mars, to which he gave the names of Phobos and Deimos. He determined the time of revolution of Phobos at 7 hours 39 minutes, and that of Deimos at 30 hours 17 minutes,—Phobos revolving round Mars more than three times for one rotation of the planet on its axis. These two satellites are very small, not more than thirty miles in diameter. After Hall’s successful search, photographs were exposed at the Paris Observatory for other Martian satellites, but none was discovered. No further moons have been found belonging to the red The discovery of a zone of small planets in the space between Mars and Jupiter belongs completely to the nineteenth century, although the existence of a planet in the vacant space was suspected three centuries ago. In 1772 the subject was taken up by Johann Elert Bode (1747-1826), afterwards director of the Berlin Observatory, who investigated a curious numerical relationship, since known as Bode’s Law, connecting the distances of the planets. If four is added to each of the numbers—0, 3, 6, 12, 24, 48, 96, and 192, the resulting series represents pretty accurately the distances of the planets from the Sun, thus—4 (Mercury), 7 (Venus), 10 (The Earth), 16 (Mars), 28, 52, (Jupiter), and 100 (Saturn). After the discovery of Uranus, in 1781, it was found that it filled up the number 196. Bode, however, saw that the number 28, between Mars and Jupiter, was vacant, and predicted the discovery of the planet. Aided by Franz Xavier von Zach (1754-1832), he called a congress of astronomers, which assembled in 1800 at SchrÖter’s observatory at Lilienthal, when, for the purpose of searching for the missing planet, the zodiac was divided into twenty-four zones, each of which was given Born in 1746 at Ponte, in Lombardy, Giuseppe Piazzi, after entering the Theatine Order of monks, became in 1780 Professor of Mathematics at Palermo, where an observatory was erected in 1791; and at that observatory Piazzi worked till his death in 1826. In 1792 he commenced a great star-catalogue, and while making his nightly observations he discovered, on January 1, 1801—the first night of the nineteenth century,—what he took to be a tailless comet, but which proved to be a small planet revolving round the sun in the vacant space. The discovery was hailed by Bode and Von Zach with much enthusiasm, and Piazzi named the planet Ceres. The little planet was, however, soon lost in the rays of the sun before sufficient observations had been made; but the great mathematician, Friedrich Gauss (1777-1855), came to the rescue, and pointed out the spot where the planet was to be rediscovered. In that spot it was found on December 31, 1801, by Von Zach at Gotha, and on the following evening by Heinrich Olbers (1758-1840) at Bremen. On March 28, 1802, while observing Ceres After 1816 the search was relinquished, as no more planets were discovered. In 1830, however, a German amateur, Karl Ludwig Hencke (1793-1866), ex-postmaster of Driessen, commenced a search for new planets, which was rewarded, after fifteen years, by the discovery of AstrÆa, December 8, 1845. On July 1, 1847, he made another discovery, that of Hebe. A few weeks later, John Russell Hind (1823-1895), the English astronomer, discovered Iris. Since 1847 not a year has passed without one or more planets In 1891 a new impulse was given to asteroid study by the application of photography by Max Wolf to the discovery of the minor planets. It occurred to Wolf that the asteroid would be represented on the plate by a trail, caused by its motion during the time of exposure; and assisted by Arnold Schwassmann (born 1870), Luigi Carnera (born 1875), and others, Wolf has discovered over a hundred asteroids, and he has the whole field of asteroid hunting to himself. Few minor planets are now discovered by the older method. In 1901 Wolf invented his new instrument of research, the stereo-comparator, which, on the principle of the old-fashioned stereoscope, represents the planetary bodies as suspended in space far in front of the stars. In this way this ingenious astronomer has been enabled to discover asteroids at the Waning interest in the ever-increasing family of asteroids was revived in 1898 by the discovery by Karl Gustav Witt (born 1866) of a small planet, to which he gave the name of Eros, which comes nearer to the Earth than Mars, and which is of great assistance to astronomers in the determination of the solar parallax. For some time prior to 1898 astronomers had considered it a waste of time to search for new asteroids; but this idea is not now so popular, in view of the benefit conferred on astronomy by the discovery of Eros. Of the physical nature of the asteroids astronomers know nothing. Only the four largest have been measured. For many years it was supposed that Vesta, the brightest of the asteroids, was also the largest. The measures of Barnard with the great Lick refractor in 1895, however, showed that Ceres is the largest, with a diameter of 477 miles. Pallas comes next, with a diameter of 304 miles; while the diameters of Vesta and Juno are respectively 239 and 120 miles. Barnard saw no traces of atmosphere |