Four years after the death of Herschel, an apothecary in the little German town of Dessau procured a small telescope, with which he began to observe the Sun. The name of this apothecary was Samuel Heinrich Schwabe (1789-1875). In 1826 he commenced to observe the spots on the Sun’s disc, counting them from day to day, more for self-amusement than from any hope of discovery; for previous astronomers had agreed that no law regulated the number of the sun-spots. Every clear day Schwabe pointed his telescope at the Sun and took his record of the spots; this he continued for forty-three years, until within a few years of his death on April 11, 1875. As early as 1843 Schwabe hinted that a possible period of ten years regulated the distribution of the spots on the Sun, but no attention was given to his idea. In 1851, however, the result of his twenty-six Rudolf Wolf (1813-1892) of the ZÜrich Observatory now undertook to search through the records of sun-spot observation, from the days of Galileo and Scheiner, to find traces of the solar cycle discovered by Schwabe. He was successful, and was enabled to correct Schwabe’s estimate of the length of the period, fixing it as on the average 11·11 years. Additional interest, however, was given to Schwabe’s and Wolf’s investigations by the remarkable discoveries which followed. In September 1851 John Lamont (1805-1879), a Scottish astronomer,—born at Braemar in Aberdeenshire, but employed as director of the Munich Observatory,—after searching through the magnetic records collected at GÖttingen and Munich, discovered that the magnetic variations indicated a period of 10? years. Soon after this Sir Edward Sabine (1788-1883), the English physicist, from a discussion of an entirely different set of observations, independently demonstrated the same In the same year an English amateur astronomer, Richard Christopher Carrington (1826-1875), commenced a series of solar observations which led to some remarkable discoveries. From observations on the spots, Carrington discovered that while the Sun’s rotation was performed in 25 days at the equator, it was protracted to 27½ days midway between the equator and the poles. In 1858 Carrington demonstrated the fact that spots are scarce in the vicinity of the solar equator, but are confined to two zones on either side, becoming scarce again at thirty-five degrees north or south of the equator. Contemporary with Carrington was Friedrich Wilhelm Gustav SpÖrer (1822-1895), who was born in Berlin in 1822 and died at Giessen, July 7, 1895. He commenced his solar observations about the same time as Carrington, and independently discovered the Sun’s equatorial At the time when Carrington and SpÖrer were pursuing these researches, the spectroscope came into use as an astronomical instrument, and since 1859 solar astronomy has been almost entirely The son of a poor glazier, Joseph von Fraunhofer was born on March 6, 1787, at Straubing, in Bavaria. His father and mother having died when their son was quite young, the boy, on account of his poverty, was apprenticed to a looking-glass manufacturer in Munich named Weichselberger, who acted tyrannically, keeping him all day at hard work. Still the lad borrowed some old books, and spent his nights in study. Young Fraunhofer lodged in an old tenement in Munich, which on July 21, 1801, collapsed, burying in its ruins its occupants. All were killed but Fraunhofer, who, though seriously injured, was dug out from the ruins four hours later. The distressing accident was witnessed by Prince Maximilian Joseph, Elector of Bavaria. He became interested in Fraunhofer, and presented him with a sum of money. Of this he made good use. He was already interested in optics, and he bought some books on that subject, as well as a glass-polishing machine. The remainder of the money served to procure his release from his tyrannical master, Weichselberger. Fraunhofer became acquainted with prominent Newton had found that, in passing through a prism, white light is dispersed into its primary colours, making up the band of coloured light known as the solar spectrum. But he failed to recognise the existence of dark lines in the spectrum. Casually seen in 1802 by William Hyde Wollaston (1786-1828), an English physicist, these lines were first thoroughly examined by Fraunhofer. Allowing light from the Sun to pass through a prism attached to the telescope, he was amazed to find several dark lines in the spectrum. By the year 1814 he had detected no less than 300 or 400 of these lines. Fraunhofer named the more prominent lines by the letters of the alphabet, from A in the red to H in the violet. They are now known as the Fraunhofer lines. At first he was much perplexed regarding the nature of the dark lines. Although he ascertained the existence of the dark lines in the Sun’s spectrum, Fraunhofer never really found out what they represented. After the death of Fraunhofer, very little was done to forward the study of spectrum analysis. Investigations in this branch of research were made, however, by Sir John Herschel (1792-1871), William Allen Miller (1817-1870), Sir David Brewster (1781-1868), and others. Two famous men of science had partly discovered the secret. These were Sir George Stokes (1819-1903), of Cambridge, and Anders John AngstrÖm (1812-1872) of Upsala. Of AngstrÖm’s work, published in 1853, it has been said that it would “have obtained a high It was not until 1859 that the principles of spectrum analysis were fully enunciated by Gustav Robert Kirchhoff (1824-1887), and his colleague in the University of Heidelberg, Robert Wilhelm Bunsen (1811-1899). Kirchhoff demonstrated that a luminous solid or liquid gives a continuous spectrum, and a gaseous substance a spectrum of bright lines. In the words of Miss Clerke, “Substances of every kind are opaque to the precise rays which they emit at the same temperature. That is to say, they stop the kinds of light or heat which they are then actually in a condition to radiate.... This principle is fundamental to solar chemistry. It gives the key to the hieroglyphics of the Fraunhofer lines. The identical characters which are written bright in terrestrial spectra are written dark in the unrolled sheaf of sun-rays.” Kirchhoff made several determinations of the substances in the Sun, proving the existence of sodium, iron, calcium, magnesium, nickel, barium, copper, and zinc. His great map of the solar spectrum was published by the Berlin Academy in 1860, and represented an enormous amount of labour. It was succeeded by another map by AngstrÖm, published in 1868. But both of The spectroscope had become, by 1868, a recognised instrument of astronomical research, and in that year it was applied during the famous total eclipse, visible in India. There were many eclipse problems, arising from the observations made by the eclipse expeditions of 1842, 1851, and 1860. The eclipse of 1851 had finally proved that the red flames seen surrounding the Sun during total eclipses belonged to the Sun, and not to the Moon, as many astronomers had believed. At the eclipse of 1860, visible in Spain, the Italian astronomer, Angelo Secchi (1818-1878), and the Englishman, Warren De la Rue (1815-1889), secured photographs of the solar prominences. The problem of 1868 was the constitution of these prominences. Pierre Jules CÉsar Janssen, born in Paris in 1824, was stationed at Guntoor, in India, to observe the eclipse. He succeeded in observing the spectrum of the prominences during the progress of totality, and found it to be one of bright lines, proving the gaseous nature of the The next advance in the study of the prominences was announced in 1869. Janssen and Lockyer had shown astronomers how to observe the spectrum of the prominences; but the researches of other two famous astronomers enabled observers to see the forms of the prominences. To the Italian school of astronomers, however, we owe the persistent and systematic study of the prominences. Among them the three greatest names are Angelo Secchi (1818-1878), The researches of Lockyer indicated that the prominences originated in a shallow gaseous atmosphere which he termed the chromosphere. Formerly astronomers had to observe only isolated prominences, but in 1892 an American astronomer, George Ellery Hale (born 1868), formerly director of the Yerkes Observatory, Another solar envelope was discovered in 1870 by Dr Charles Augustus Young, who from 1866 to 1877 directed the Observatory at Dartmouth, New Hampshire, and from 1877 to 1905, that at Princeton, New Jersey. During the eclipse of December 22, 1870, Young was stationed at Tenez de Frontena, Spain. As the solar crescent grew apparently thinner before the disc of the Moon, “the dark lines of the spectrum,” he says, “and the spectrum itself gradually faded away, until all at once, as suddenly as a bursting rocket shoots out its stars, the whole field of view was filled with bright lines, more numerous than one could count. The phenomenon was so sudden, so unexpected, and so wonderfully beautiful, as to force an involuntary exclamation.” The phenomenon was observed for two seconds, and the impression was left on the astronomer that a bright line had taken the place of every dark one in the solar spectrum, the spectrum being completely reversed. Hence the name which was given to the hypothetical envelope—“the reversing layer.” For long the existence The last of the solar appendages, the corona, can only be seen during total eclipses. The researches of Young and Janssen indicate that it is partly gaseous and partly meteoric in its constitution; and various photographs, taken at the eclipses since 1870, have demonstrated its variation in shape, which is in harmony with the eleven-year period. Several attempts have been made to observe the corona without an eclipse. In 1882 Huggins made the attempt, but failed, and Hale, with his photographic process, had no better success. More recently, in 1904, a Russian astronomer, Alexis Hansky, observing from the top of Mont Blanc, secured some photographs on which he believes the corona is represented, but so far his observations have not been confirmed by other astronomers. The application of the spectroscope to the motions on the solar surface is perhaps one of the most wonderful triumphs in astronomical science. In 1842 Christian Doppler (1803-1853), Professor of Mathematics at Prague, had expressed Nils Christopher DunÉr, born in 1839 in Scania, was employed as an assistant at Lund In 1873 the Astronomer-Royal of England commenced at Greenwich Observatory to photograph the Sun daily. This work has been carried on there by Edward Walter Maunder (born 1851), and Greenwich Observatory possesses a photographic record of sun-spots. At the Meudon Astrophysical Observatory, near Paris, Janssen has, since 1876, secured photographs of the solar surface, which were comprised in a great atlas, published by him in January 1904. These photographs have revealed a remarkable phenomenon—the “rÉseau photospherique,” the distribution over the solar surface of blurred patches of light, which Janssen considers are inherent in the Sun. The Greenwich records of sun-spots and of Herschel’s hypothesis of a dark and cool globe beneath the solar photosphere was seen to be untenable after the introduction of the spectroscope. The first important theory as to the solar constitution was that advanced in 1865 by the French astronomer, HervÉ Faye (1814-1902). Numerous other theories were afterwards advanced by Secchi, ZÖllner, Young, and others, but a complete description of the various developments in solar theorising cannot be given here. There is no complete “theory” of the exact constitution of every part of the Sun, but the unpretentious “Views of Professor Young on the Constitution of the Sun,” which appeared in April 1904 in ‘Popular Astronomy,’ represent the latest ideas of the foremost solar investigator. Professor Young regards the reversing layer and the chromosphere as “simply The important question of the distance of the Sun was thoroughly investigated in 1824 by Johann Franz Encke (1791-1865), then of Seeberg, near Gotha, who, from a discussion of the transits of Venus in 1761 and 1769, found a parallax of 8·571, corresponding to a mean distance of 95,000,000 miles. This value was accepted for thirty years, until Peter Andreas Hansen (1795-1874), in 1854, and Urban Jean Joseph Le Verrier (1811-1877), in 1858, found from mathematical investigations that the distance indicated was too great. Preparations were accordingly made for the observation of the transits of Venus, which took place respectively on December 8, 1874, and December 6, 1882. On the first occasion many expeditions were sent to view the transit, consisting of What a different picture the sun presents to us at the beginning of the twentieth century from that which it presented to Herschel and his contemporaries at the beginning of the nineteenth! To Herschel, the Sun was a cool dark globe, surrounded by a luminous atmosphere. As the outcome of the researches and discoveries outlined in this chapter, the Sun is now seen to be a vast central world, which is over a million times larger than the Earth. In the words of an able writer, “It is most probably a world of gases, where most of the metals and metallic gases that we know exist only as vapours, even at the Sun’s surface, hotter than any furnace on earth, and getting a still fiercer heat for every mile of descent lower. Of that heat in the Sun’s interior we can form no conception. The pressure within the Sun is equally inconceivable. A cannon-ball weighing 100 lb. on earth would weigh 2700 The following remark of Professor Newcomb shows our inability to realise the solar activity. “Suppose,” he says, “every foot of space in a whole country covered with 13-inch cannon, all pointed upward, and all discharged at once. The result would compare with what is going on inside the photosphere about as much as a boy’s popgun compares with the cannon.” |