Twenty years ago when Kirchhoff defined the object of mechanics as the "description, in complete and very simple terms, of the motions occurring in nature," he produced by the statement a peculiar impression. Fourteen years subsequently, Boltzmann, in the life-like picture which he drew of the great inquirer, could still speak of the universal astonishment at this novel method of treating mechanics, and we meet with epistemological treatises to-day, which plainly show how difficult is the acceptance of this point of view. A modest and small band of inquirers there were, however, to whom Kirchhoff's few words were tidings of a welcome and powerful ally in the epistemological field. Now, how does it happen that we yield our assent so reluctantly to the philosophical opinion of an inquirer for whose scientific achievements we have only words of praise? One reason probably is that few inquirers can find time and leisure, amid the exacting Permit me, for a moment, to contemplate not the results of science, but the mode of its growth, in a frank and unbiassed manner. We know of only one source of immediate revelation of scientific facts—our senses. Restricted to this source alone, thrown wholly upon his own resources, obliged to start always anew, what could the isolated individual accomplish? Of a stock of knowledge so acquired the science of a distant negro hamlet in darkest Africa could hardly give us a sufficiently humiliating conception. For there that veritable miracle of thought-transference has already begun its work, compared with which the miracles of the spiritualists are rank monstrosities—communication by language. Reflect, too, that by means of the magical characters which our libraries contain we can raise the spirits of the "the sovereign dead of old" from Faraday to Galileo and Archimedes, through ages of time—spirits who do not dismiss us with ambiguous and derisive oracles, but tell us the best they know; then shall we feel what a stupendous and indispensable factor in the formation of science communication is. Not the dim, half-conscious surmises of the acute observer of nature or critic of humanity belong to science, but only that which they possess clearly enough to communicate to others. But how, now, do we go about this communication of a newly acquired experience, of a newly observed fact? As the different calls and battle-cries of gregarious animals are unconsciously formed signs for a common observation or action, irrespective of the causes which produce such action—a fact that already involves the germ of the concept; so also the words of human language, which is only more highly specialised, are names or signs for universally known facts, which all can observe or have observed. If the mental representation, accordingly, follows the new fact at once and passively, then that new fact must, of itself, immediately be constituted and represented in thought by facts already universally known and commonly observed. Memory is always ready to put forward for comparison known facts which resemble the new event, or agree with it in certain features, and so renders possible that elementary internal judgment which the mature and definitively formulated judgment soon follows. Comparison, as the fundamental condition of communication, is the most powerful inner vital element of science. The zoÖlogist sees in the bones of the wing-membranes of bats, fingers; he compares the bones of the cranium with the vertebrÆ, the embryos of different organisms with one another, and the different stages of development of the same organism with one another. The geographer sees in Lake Garda a fjord, in the Sea of Aral a lake in process of drying up. The philologist compares different languages with one another, and the formations of the same language as well. If it is not customary to speak of comparative physics in the same sense that we speak of comparative anatomy, the reason is that in a science of such great experimental activity the attention is turned away too much from the contemplative element. But like all other sciences, physics lives and grows by comparison. The manner in which the result of the comparison finds expression in the communication, varies of course very much. When we say that the colors of the spectrum are red, yellow, green, blue, and violet, the designations employed may possibly have been derived from the technology of tattooing, or they may subsequently have acquired the significance of standing for the colors of the rose, the lemon, the leaf, the corn-flower, and the violet. From the frequent repetition of such comparisons, however, made under the most manifold circumstances, the inconstant features, as compared with the permanent congruent features, get so obliterated that the latter acquire a fixed significance independent of every object and connexion, or take on as we say an abstract or conceptual import. No one thinks at the word "red" of any other agreement with the rose than that of color, or at the word "straight" of any other property of a stretched cord than the sameness of direction. Just so, too, numbers, originally the names of the fingers of the hands and feet, from being used as arrangement-signs for all kinds of objects, were lifted to the plane of abstract concepts. A verbal report (communication) of a fact that uses only these purely abstract implements, we call a direct description. The direct description of a fact of any great extent is an irksome task, even where the requisite notions are already completely developed. What a simplification it involves if we can say, the fact A now considered comports itself, not in one, but in many or in all its features, like an old and well-known fact B. The moon comports itself as a heavy body does with respect to the earth; light like a wave-motion or an electric vibration; a magnet, as if it were laden with gravitating fluids, and so on. We call such a description, in which we appeal, as it were, to a description already and elsewhere formulated, or perhaps still to be precisely formulated, an indirect description. We are at liberty to supplement this description, gradually, by direct description, to correct it, or to replace it altogether. We see, thus, without difficulty, that what is called a theory or a theoretical idea, falls under the category of what is here termed indirect description. What, now, is a theoretical idea? Whence do we get it? What does it accomplish for us? Why does it occupy a higher place in our judgment than the mere holding fast to a fact or an observation? Here, too, memory and comparison alone are in play. But instead of a single feature of resemblance culled from memory, in this case a great system of resemblances confronts us, a well-known physiognomy, by means of which the new fact is immediately transformed into an old acquaintance. Besides, it is in the power of the idea to offer us more than we actually see in the new fact, at the first moment; it can extend the fact, and enrich it with features which we are first induced to seek from such suggestions, and which are often actually found. It is this rapidity in extending knowledge that gives to theory a preference over simple observation. But that preference is wholly quantitative. Qualitatively, and in real essential points, theory differs from observation neither in the mode of its origin nor in its last results. The adoption of a theory, however, always involves a danger. For a theory puts in the place of a fact A in thought, always a different, but simpler and more familiar fact B, which in some relations can mentally represent A, but for the very reason that it is different, in other relations cannot represent it. If now, as may readily happen, sufficient care is not exercised, the most fruitful theory may, in special circumstances, become a downright obstacle to inquiry. Thus, the emission-theory of light, in accustoming the physicist to think of the projectile path of the "light-particles" as an undifferentiated straight-line, demonstrably impeded the discovery of the periodicity of light. By putting in the place of light the more familiar phenomena of sound, Huygens renders light in many of its features a familiar event, but with respect to polarisation, which lacks the longitudinal waves with which alone he was acquainted, it had for him a doubly strange aspect. He is unable thus to grasp in abstract thought the fact of polarisation, which is before his eyes, whilst Newton, merely by adapting to the observation his thoughts, and putting this question, "Annon radiorum luminis diversa sunt latera?" abstractly grasped polarisation, that is, directly described it, a century before Malus. On the other hand, if the agreement of the fact with the idea theoretically representing it, extends further than its inventor originally anticipated, then we may be led by it to unexpected discoveries, of which conical refraction, circular polarisation by total reflexion, Hertz's waves offer ready examples, in contrast to the illustrations given above. Our insight into the conditions indicated will be improved, perhaps, by contemplating the development of some theory or other more in detail. Let us consider a magnetised bar of steel by the side of a second unmagnetised bar, in all other respects the same. The second bar gives no indication of the presence of iron-filings; the first attracts them. Also, when the iron-filings are absent, we must think of the magnetised bar as in a different condition from that of the unmagnetised. For, that the mere presence of the iron-filings does not induce the phenomenon of attraction is proved by the second unmagnetised bar. The ingenuous man, who finds in his will, as his most familiar source of power, the best facilities for comparison, conceives a species of spirit in the magnet. The behavior of a warm body or of an electrified body suggests similar ideas. This is the point of view of the oldest theory, fetishism, which the inquirers of the early Middle Ages had not yet overcome, and which in its last vestiges, in the conception of forces, still flourishes in modern physics. We see, thus, the dramatic element need no more be absent in a scientific description, than in a thrilling novel. If, on subsequent examination, it be observed that a cold body, in contact with a hot body, warms itself, so to speak, at the expense of the hot body; further, that when the substances are the same, the cold body, which, let us say, has twice the mass of the other, gains only half the number of degrees of temperature that the other loses, a wholly new impression arises. The demoniac character of the event vanishes, for the supposed spirit acts not by caprice, but according to fixed laws. In its place, however, instinctively the notion of a substance is substituted, part of which flows over from the one body to the other, but the total amount of which, representable by the sum of the products of the masses into the respective changes of temperature, remains constant. Black was the first to be powerfully struck with this resemblance of thermal processes to the motion of a substance, and under its guidance discovered the specific heat, the heat of fusion, and the heat of vaporisation of bodies. Gaining strength and fixity, however, from these successes, this notion of substance subsequently stood in the way of scientific advancement. It blinded the eyes of the successors of Black, and prevented them from seeing the manifest fact, which every savage knows, that heat is produced by friction. Fruitful as that notion was for Black, helpful as it still is to the learner to-day in Black's special field, permanent and universal validity as a theory it could never maintain. But what is essential, conceptually, in it, viz., the constancy of the product-sum above mentioned, retains its value and may be regarded as a direct description of Black's facts. It stands to reason that those theories which push themselves forward unsought, instinctively, and wholly of their own accord, should have the greatest power, should carry our thoughts most with them, and exhibit the staunchest powers of self-preservation. On the other hand, it may also be observed that when critically scrutinised such theories are extremely apt to lose their cogency. We are constantly busied with "substance," its modes of action have stamped themselves indelibly upon our thoughts, our vividest and clearest reminiscences are associated with it. It should cause us no surprise, therefore, that Robert Mayer and Joule, who gave the final blow to Black's substantial conception of heat, should have re-introduced the same notion of substance in a more abstract and modified form, only applying to a much more extensive field. Here, too, the psychological circumstances which impart to the new conception its power, lie clearly before us. By the unusual redness of the venous blood in tropical climates Mayer's attention is directed to the lessened expenditure of internal heat and to the proportionately lessened consumption of material by the human body in those climates. But as every effort of the human organism, including its mechanical work, is connected with the consumption of material, and as work by friction can engender heat, therefore heat and work appear in kind equivalent, and between them a proportional relation must subsist. Not every quantity, but the appropriately calculated sum of the two, as connected with a proportionate consumption of material, appears substantial. By exactly similar considerations, relative to the economy of the galvanic element, Joule arrived at his view; he found experimentally that the sum of the heat evolved in the circuit, of the heat consumed in the combustion of the gas developed, of the electro-magnetic work of the current, properly calculated,—in short, the sum of all the effects of the battery,—is connected with a proportionate consumption of zinc. Accordingly, this sum itself has a substantial character. Mayer was so absorbed with the view attained, that the indestructibility of force, in our phraseology work, appeared to him a priori evident. "The creation or annihilation of a force," he says, "lies without the province of human thought and power." Joule expressed himself to a similar effect: "It is manifestly absurd to suppose that the powers with which God has endowed matter can be destroyed." Strange to say, on the basis of such utterances, not Joule, but Mayer, was stamped as a metaphysician. We may be sure, however, that both men were merely giving expression, and that half-unconsciously, to a powerful formal need of the new simple view, and that both would have been extremely surprised if it had been proposed to them that their principle should be submitted to a philosophical congress or ecclesiastical synod for a decision upon its validity. But with all agreements, the attitude of these two men, in other respects, was totally different. Whilst Mayer represented this formal need with all the stupendous instinctive force of genius, we might say almost with the ardor of fanaticism, yet was withal not wanting in the conceptive ability to compute, prior to all other inquirers, the mechanical equivalent of heat from old physical constants long known and at the disposal of all, and so to set up for the new doctrine a programme embracing all physics and physiology; Joule, on the other hand, applied himself to the exact verification of the doctrine by beautifully conceived and masterfully executed experiments, extending over all departments of physics. Soon Helmholtz too attacked the problem, in a totally independent and characteristic manner. After the professional virtuosity with which this physicist grasped and disposed of all the points unsettled by Mayer's programme and more besides, what especially strikes us is the consummate critical lucidity of this young man of twenty-six years. In his exposition is wanting that vehemence and impetuosity which marked Mayer's. The principle of the conservation of energy is no self-evident or a priori proposition for him. What follows, on the assumption that that proposition obtains? In this hypothetical form, he subjugates his matter. I must confess, I have always marvelled at the Æsthetic and ethical taste of many of our contemporaries who have managed to fabricate out of this relation of things, odious national and personal questions, instead of praising the good fortune that made several such men work together and of rejoicing at the instructive diversity and idiosyncrasies of great minds fraught with such rich consequences for us. We know that still another theoretical conception played a part in the development of the principle of energy, which Mayer held aloof from, namely, the conception that heat, as also the other physical processes, are due to motion. But once the principle of energy has been reached, these auxiliary and transitional theories discharge no essential function, and we may regard the principle, like that which Black gave, as a contribution to the direct description of a widely extended domain of facts. It would appear from such considerations not only advisable, but even necessary, with all due recognition of the helpfulness of theoretic ideas in research, yet gradually, as the new facts grow familiar, to substitute for indirect description direct description, which contains nothing that is unessential and restricts itself absolutely to the abstract apprehension of facts. We might almost say, that the descriptive sciences, so called with a tincture of condescension, have, in respect of scientific character, outstripped the physical expositions lately in vogue. Of course, a virtue has been made of necessity here. We must admit, that it is not in our power to describe directly every fact, on the moment. Indeed, we should succumb in utter despair if the whole wealth of facts which we come step by step to know, were presented to us all at once. Happily, only detached and unusual features first strike us, and such we bring nearer to ourselves by comparison with every-day events. Here the notions of the common speech are first developed. The comparisons then grow more manifold and numerous, the fields of facts compared more extensive, the concepts that make direct description possible, proportionately more general and more abstract. First we become familiar with the motion of freely falling bodies. The concepts of force, mass, and work are then carried over, with appropriate modifications, to the phenomena of electricity and magnetism. A stream of water is said to have suggested to Fourier the first distinct picture of currents of heat. A special case of vibrations of strings investigated by Taylor, cleared up for him a special case of the conduction of heat. Much in the same way that Daniel Bernoulli and Euler constructed the most diverse forms of vibrations of strings from Taylor's cases, so Fourier constructs out of simple cases of conduction the most multifarious motions of heat; and that method has extended itself over the whole of physics. Ohm forms his conception of the electric current in imitation of Fourier's. The latter, also, adopts Fick's theory of diffusion. In an analogous manner a conception of the magnetic current is developed. All sorts of stationary currents are thus made to exhibit common features, and even the condition of complete equilibrium in an extended medium shares these features with the dynamical condition of equilibrium of a stationary current. Things as remote as the magnetic lines of force of an electric current and the stream-lines of a frictionless liquid vortex enter in this way into a peculiar relationship of similarity. The concept of potential, originally enunciated for a restricted province, acquires a wide-reaching applicability. Things as dissimilar as pressure, temperature, and electromotive force, now show points of agreement in relation to ideas derived by definite methods from that concept: viz., fall of pressure, fall of temperature, fall of potential, as also with the further notions of liquid, thermal, and electric strength of current. That relationship between systems of ideas in which the dissimilarity of every two homologous concepts as well as the agreement in logical relations of every two homologous pairs of concepts, is clearly brought to light, is called an analogy. It is an effective means of mastering heterogeneous fields of facts in unitary comprehension. The path is plainly shown in which a universal physical phenomenology embracing all domains, will be developed. In the process described we attain for the first time to what is indispensable in the direct description of broad fields of fact—the wide-reaching abstract concept. And now I must put a question smacking of the school-master, but unavoidable: What is a concept? Is it a hazy representation, admitting withal of mental visualisation? No. Mental visualisation accompanies it only in the simplest cases, and then merely as an adjunct. Think, for example, of the "coefficient of self-induction," and seek for its visualised mental image. Or is, perhaps, the concept a mere word? The adoption of this forlorn idea, which has been actually proposed of late by a reputed mathematician would only throw us back a thousand years into the deepest scholasticism. We must, therefore, reject it. The solution is not far to seek. We must not think that sensation, or representation, is a purely passive process. The lowest organisms respond to it with a simple reflex motion, by engulfing the prey which approaches them. In higher organisms the centripetal stimulus encounters in the nervous system obstacles and aids which modify the centrifugal process. In still higher organisms, where prey is pursued and examined, the process in question may go through extensive paths of circular motions before it comes to relative rest. Our own life, too, is enacted in such processes; all that we call science may be regarded as parts, or middle terms, of such activities. It will not surprise us now if I say: the definition of a concept, and, when it is very familiar, even its name, is an impulse to some accurately determined, often complicated, critical, comparative, or constructive activity, the usually sense-perceptive result of which is a term or member of the concept's scope. It matters not whether the concept draws the attention only to one certain sense (as sight) or to a phase of a sense (as color, form), or is the starting-point of a complicated action; nor whether the activity in question (chemical, anatomical, and mathematical operations) is muscular or technical, or performed wholly in the imagination, or only intimated. The concept is to the physicist what a musical note is to a piano-player. A trained physicist or mathematician reads a memoir like a musician reads a score. But just as the piano-player must first learn to move his fingers singly and collectively, before he can follow his notes without effort, so the physicist or mathematician must go through a long apprenticeship before he gains control, so to speak, of the manifold delicate innervations of his muscles and imagination. Think of how frequently the beginner in physics or mathematics performs more, or less, than is required, or of how frequently he conceives things differently from what they are! But if, after having had sufficient discipline, he lights upon the phrase "coefficient of self-induction," he knows immediately what that term requires of him. Long and thoroughly practised actions, which have their origin in the necessity of comparing and representing facts by other facts, are thus the very kernel of concepts. In fact, positive and philosophical philology both claim to have established that all roots represent concepts and stood originally for muscular activities alone. The slow assent of physicists to Kirchhoff's dictum now becomes intelligible. They best could feel the vast amount of individual labor, theory, and skill required before the ideal of direct description could be realised. Suppose, now, the ideal of a given province of facts is reached. Does description accomplish all that the inquirer can ask? In my opinion, it does. Description is a building up of facts in thought, and this building up is, in the experimental sciences, often the condition of actual execution. For the physicist, to take a special case, the metrical units are the building-stones, the concepts the directions for building, and the facts the result of the building. Our mental imagery is almost a complete substitute for the fact, and by means of it we can ascertain all the fact's properties. We do not know that worst which we ourselves have made. People require of science that it should prophesy, and Hertz uses that expression in his posthumous Mechanics. But, natural as it is, the expression is too narrow. The geologist and the palÆontologist, at times the astronomer, and always the historian and the philologist, prophesy, so to speak, backwards. The descriptive sciences, like geometry and mathematics, prophesy neither forward or backwards, but seek from given conditions the conditioned. Let us say rather: Science completes in thought facts that are only partly given. This is rendered possible by description, for description presupposes the interdependence of the descriptive elements: otherwise nothing would be described. It is said, description leaves the sense of causality unsatisfied. In fact, many imagine they understand motions better when they picture to themselves the pulling forces; and yet the accelerations, the facts, accomplish more, without superfluous additions. I hope that the science of the future will discard the idea of cause and effect, as being formally obscure; and in my feeling that these ideas contain a strong tincture of fetishism, I am certainly not alone. The more proper course is, to regard the abstract determinative elements of a fact as interdependent, in a purely logical way, as the mathematician or geometer does. True, by comparison with the will, forces are brought nearer to our feeling; but it may be that ultimately the will itself will be made clearer by comparison with the accelerations of masses. If we are asked, candidly, when is a fact clear to us, we must say "when we can reproduce it by very simple and very familiar intellectual operations, such as the construction of accelerations, or the geometrical summation of accelerations, and so forth." The requirement of simplicity is of course to the expert a different matter from what it is to the novice. For the first, description by a system of differential equations is sufficient; for the second, a gradual construction out of elementary laws is required. The first discerns at once the connexion of the two expositions. Of course, it is not disputed that the artistic value of materially equivalent descriptions may not be different. Most difficult is it to persuade strangers that the grand universal laws of physics, such as apply indiscriminately to material, electrical, magnetic, and other systems, are not essentially different from descriptions. As compared with many sciences, physics occupies in this respect a position of vantage that is easily explained. Take, for example, anatomy. As the anatomist in his quest for agreements and differences in animals ascends to ever higher and higher classifications, the individual facts that represent the ultimate terms of the system, are still so different that they must be singly noted. Think, for example, of the common marks of the Vertebrates, of the class-characters of Mammals and Birds on the one hand and of Fishes on the other, of the double circulation of the blood on the one hand and of the single on the other. In the end, always isolated facts remain, which show only a slight likeness to one another. A science still more closely allied to physics, chemistry, is often in the same strait. The abrupt change of the qualitative properties, in all likelihood conditioned by the slight stability of the intermediate states, the remote resemblance of the co-ordinated facts of chemistry render the treatment of its data difficult. Pairs of bodies of different qualitative properties unite in different mass-ratios; but no connexion between the first and the last is to be noted, at first. Physics, on the other hand, reveals to us wide domains of qualitatively homogeneous facts, differing from one another only in the number of equal parts into which their characteristic marks are divisible, that is, differing only quantitatively. Even where we have to deal with qualities (colors and sounds), quantitative characters of those qualities are at our disposal. Here the classification is so simple a task that it rarely impresses us as such, whilst in infinitely fine gradations, in a continuum of facts, our number-system is ready beforehand to follow as far as we wish. The co-ordinated facts are here extremely similar and very closely affined, as are also their descriptions which consist in the determination of the numerical measures of one given set of characters from those of a different set by means of familiar mathematical operations—methods of derivation. Thus, the common characteristics of all descriptions can be found here; and with them a succinct, comprehensive description, or a rule for the construction of all single descriptions, is assigned,—and this we call law. Well-known examples are the formulÆ for freely falling bodies, for projectiles, for central motion, and so forth. If physics apparently accomplishes more by its methods than other sciences, we must remember that in a sense it has presented to it much simpler problems. The remaining sciences, whose facts also present a physical side, need not be envious of physics for this superiority; for all its acquisitions ultimately redound to their benefit as well. But also in other ways this mutual help shall and must change. Chemistry has advanced very far in making the methods of physics her own. Apart from older attempts, the periodical series of Lothar Meyer and Mendelejeff are a brilliant and adequate means of producing an easily surveyed system of facts, which by gradually becoming complete, will take the place almost of a continuum of facts. Further, by the study of solutions, of dissociation, in fact generally of phenomena which present a continuum of cases, the methods of thermodynamics have found entrance into chemistry. Similarly we may hope that, at some future day, a mathematician, letting the fact-continuum of embryology play before his mind, which the palÆontologists of the future will supposedly have enriched with more intermediate and derivative forms between Saurian and Bird than the isolated Pterodactyl, ArchÆopteryx, Ichthyornis, and so forth, which we now have—that such a mathematician shall transform, by the variation of a few parameters, as in a dissolving view, one form into another, just as we transform one conic section into another. Reverting now to Kirchhoff's words, we can come to some agreement regarding their import. Nothing can be built without building-stones, mortar, scaffolding, and a builder's skill. Yet assuredly the wish is well founded, that will show to posterity the complete structure in its finished form, bereft of unsightly scaffolding. It is the pure logical and Æsthetic sense of the mathematician that speaks out of Kirchhoff's words. Modern expositions of physics aspire after his ideal; that, too, is intelligible. But it would be a poor didactic shift, for one whose business it was to train architects, to say: "Here is a splendid edifice; if thou wouldst really build, go thou and do likewise". The barriers between the special sciences, which make division of work and concentration possible, but which appear to us after all as cold and conventional restrictions, will gradually disappear. Bridge upon bridge is thrown over the gaps. Contents and methods, even of the remotest branches, are compared. When the Congress of Natural Scientists shall meet a hundred years hence, we may expect that they will represent a unity in a higher sense than is possible to-day, not in sentiment and aim alone, but in method also. In the meantime, this great change will be helped by our keeping constantly before our minds the fact of the intrinsic relationship of all research, which Kirchhoff characterised with such classical simplicity. |