ON THE FUNDAMENTAL CONCEPTS OF ELECTROSTATICS. [26]

Previous

The task has been assigned me to develop before you in a popular manner the fundamental quantitative concepts of electrostatics—"quantity of electricity," "potential," "capacity," and so forth. It would not be difficult, even within the brief limits of an hour, to delight the eye with hosts of beautiful experiments and to fill the imagination with numerous and varied conceptions. But we should, in such a case, be still far from a lucid and easy grasp of the phenomena. The means would still fail us for reproducing the facts accurately in thought—a procedure which for the theoretical and practical man is of equal importance. These means are the metrical concepts of electricity.

As long as the pursuit of the facts of a given province of phenomena is in the hands of a few isolated investigators, as long as every experiment can be easily repeated, the fixing of the collected facts by provisional description is ordinarily sufficient. But the case is different when the whole world must make use of the results reached by many, as happens when the science acquires broader foundations and scope, and particularly so when it begins to supply intellectual nourishment to an important branch of the practical arts, and to draw from that province in return stupendous empirical results. Then the facts must be so described that individuals in all places and at all times can, from a few easily obtained elements, put the facts accurately together in thought, and reproduce them from the description. This is done with the help of the metrical concepts and the international measures.

The work which was begun in this direction in the period of the purely scientific development of the science, especially by Coulomb (1784), Gauss (1833), and Weber (1846), was powerfully stimulated by the requirements of the great technical undertakings manifested since the laying of the first transatlantic cable, and brought to a brilliant conclusion by the labors of the British Association, 1861, and of the Paris Congress, 1881, chiefly through the exertions of Sir William Thomson.

It is plain, that in the time allotted to me I cannot conduct you over all the long and tortuous paths which the science has actually pursued, that it will not be possible at every step to remind you of all the little precautions for the avoidance of error which the early steps have taught us. On the contrary, I must make shift with the simplest and rudest tools. I shall conduct you by the shortest paths from the facts to the ideas, in doing which, of course, it will not be possible to anticipate all the stray and chance ideas which may and must arise from prospects into the by-paths which we leave untrodden.


Here are two small, light bodies (Fig. 27) of equal size, freely suspended, which we "electrify" either by friction with a third body or by contact with a body already electrified. At once a repulsive force is set up which drives the two bodies away from each other in opposition to the action of gravity. This force could accomplish anew the same mechanical work which was expended to produce it.[27]

Fig. 27.
Fig. 28.

Coulomb, now, by means of delicate experiments with the torsion-balance, satisfied himself that if the bodies in question, say at a distance of two centimetres, repelled each other with the same force with which a milligramme-weight strives to fall to the ground, at half that distance, or at one centimetre, they would repel each other with the force of four milligrammes, and at double that distance, or at four centimetres, they would repel each other with the force of only one-fourth of a milligramme. He found that the electrical force acts inversely as the square of the distance.

Let us imagine, now, that we possessed some means of measuring electrical repulsion by weights, a means which would be supplied, for example, by our electrical pendulums; then we could make the following observation.

The body A (Fig. 28) is repelled by the body K at a distance of two centimetres with a force of one milligramme. If we touch A, now, with an equal body B, the half of this force of repulsion will pass to the body B; both A and B, now, at a distance of two centimetres from K, are repelled only with the force of one-half a milligramme. But both together are repelled still with the force of one milligramme. Hence, the divisibility of electrical force among bodies in contact is a fact. It is a useful, but by no means a necessary supplement to this fact, to imagine an electrical fluid present in the body A, with the quantity of which the electrical force varies, and half of which flows over to B. For, in the place of the new physical picture, thus, an old, familiar one is substituted, which moves spontaneously in its wonted courses.

Adhering to this idea, we define the unit of electrical quantity, according to the now almost universally adopted centimetre-gramme-second (C. G. S.) system, as that quantity which at a distance of one centimetre repels an equal quantity with unit of force, that is, with a force which in one second would impart to a mass of one gramme a velocity-increment of a centimetre. As a gramme mass acquires through the action of gravity a velocity-increment of about 981 centimetres in a second, accordingly, a gramme is attracted to the earth with 981, or, in round numbers, 1000 units of force of the centimetre-gramme-second system, while a milligramme-weight would strive to fall to the earth with approximately the unit force of this system.

We may easily obtain by this means a clear idea of what the unit quantity of electricity is. Two small bodies, K, weighing each a gramme, are hung up by vertical threads, five metres in length and almost weightless, so as to touch each other. If the two bodies be equally electrified and move apart upon electrification to a distance of one centimetre, their charge is approximately equivalent to the electrostatic unit of electric quantity, for the repulsion then holds in equilibrium a gravitational force-component of approximately one milligramme, which strives to bring the bodies together.

Vertically beneath a small sphere suspended from the equilibrated beam of a balance a second sphere is placed at a distance of a centimetre. If both be equally electrified the sphere suspended from the balance will be rendered apparently lighter by the repulsion. If by adding a weight of one milligramme equilibrium is restored, each of the spheres contains in round numbers the electrostatic unit of electrical quantity.

In view of the fact that the same electrical bodies exert at different distances different forces upon one another, exception might be taken to the measure of quantity here developed. What kind of a quantity is that which now weighs more, and now weighs less, so to speak? But this apparent deviation from the method of determination commonly used in practical life, that by weight, is, closely considered, an agreement. On a high mountain a heavy mass also is less powerfully attracted to the earth than at the level of the sea, and if it is permitted us in our determinations to neglect the consideration of level, it is only because the comparison of a body with fixed conventional weights is invariably effected at the same level. In fact, if we were to make one of the two weights equilibrated on our balance approach sensibly to the centre of the earth, by suspending it from a very long thread, as Prof. von Jolly of Munich suggested, we should make the gravity of that weight, its heaviness, proportionately greater.

Let us picture to ourselves, now, two different electrical fluids, a positive and a negative fluid, of such nature that the particles of the one attract the particles of the other according to the law of the inverse squares, but the particles of the same fluid repel each other by the same law; in non-electrical bodies let us imagine the two fluids uniformly distributed in equal quantities, in electric bodies one of the two in excess; in conductors, further, let us imagine the fluids mobile, in non-conductors immobile; having formed such pictures, we possess the conception which Coulomb developed and to which he gave mathematical precision. We have only to give this conception free play in our minds and we shall see as in a clear picture the fluid particles, say of a positively charged conductor, receding from one another as far as they can, all making for the surface of the conductor and there seeking out the prominent parts and points until the greatest possible amount of work has been performed. On increasing the size of the surface, we see a dispersion, on decreasing its size we see a condensation of the particles. In a second, non-electrified conductor brought into the vicinity of the first, we see the two fluids immediately separate, the positive collecting itself on the remote and the negative on the adjacent side of its surface. In the fact that this conception reproduces, lucidly and spontaneously, all the data which arduous research only slowly and gradually discovered, is contained its advantage and scientific value. With this, too, its value is exhausted. We must not seek in nature for the two hypothetical fluids which we have added as simple mental adjuncts, if we would not go astray. Coulomb's view may be replaced by a totally different one, for example, by that of Faraday, and the most proper course is always, after the general survey is obtained, to go back to the actual facts, to the electrical forces.

Fig. 29.
Fig. 30.

We will now make ourselves familiar with the concept of electrical quantity, and with the method of measuring or estimating it. Imagine a common Leyden jar (Fig. 29), the inner and outer coatings of which are connected together by means of two common metallic knobs placed about a centimetre apart. If the inside coating be charged with the quantity of electricity +q, on the outer coating a distribution of the electricities will take place. A positive quantity almost equal[28] to the quantity +q flows off to the earth, while a corresponding quantity-q is still left on the outer coating. The knobs of the jar receive their portion of these quantities and when the quantity q is sufficiently great a rupture of the insulating air between the knobs, accompanied by the self-discharge of the jar, takes place. For any given distance and size of the knobs, a charge of a definite electric quantity q is always necessary for the spontaneous discharge of the jar.

Let us insulate, now, the outer coating of a Lane's unit jar L, the jar just described, and put in connexion with it the inner coating of a jar F exteriorly connected with the earth (Fig. 30). Every time that L is charged with +q, a like quantity +q is collected on the inner coating of F, and the spontaneous discharge of the jar L, which is now again empty, takes place. The number of the discharges of the jar L furnishes us, thus, with a measure of the quantity collected in the jar F, and if after 1, 2, 3, ... spontaneous discharges of L the jar F is discharged, it is evident that the charge of F has been proportionately augmented.

Fig. 31.

Let us supply now, to effect the spontaneous discharge, the jar F with knobs of the same size and at the same distance apart as those of the jar L (Fig. 31). If we find, then, that five discharges of the unit jar take place before one spontaneous discharge of the jar F occurs, plainly the jar F, for equal distances between the knobs of the two jars, equal striking distances, is able to hold five times the quantity of electricity that L can, that is, has five times the capacity of L.[29]

Fig. 32.

We will now replace the unit jar L, with which we measure electricity, so to speak, into the jar F, by a Franklin's pane, consisting of two parallel flat metal plates (Fig. 32), separated only by air. If here, for example, thirty spontaneous discharges of the pane are sufficient to fill the jar, ten discharges will be found sufficient if the air-space between the two plates be filled with a cake of sulphur. Hence, the capacity of a Franklin's pane of sulphur is about three times greater than that of one of the same shape and size made of air, or, as it is the custom to say, the specific inductive capacity of sulphur (that of air being taken as the unit) is about 3.[30] We are here arrived at a very simple fact, which clearly shows us the significance of the number called dielectric constant, or specific inductive capacity, the knowledge of which is so important for the theory of submarine cables.

Let us consider a jar A, which is charged with a certain quantity of electricity. We can discharge the jar directly. But we can also discharge the jar A (Fig. 33) partly into a jar B, by connecting the two outer coatings with each other. In this operation a portion of the quantity of electricity passes, accompanied by sparks, into the jar B, and we now find both jars charged.

Fig. 33.
Fig. 34.

It may be shown as follows that the conception of a constant quantity of electricity can be regarded as the expression of a pure fact. Picture to yourself any sort of electrical conductor (Fig. 34); cut it up into a large number of small pieces, and place these pieces by means of an insulated rod at a distance of one centimetre from an electrical body which acts with unit of force on an equal and like-constituted body at the same distance. Take the sum of the forces which this last body exerts on the single pieces of the conductor. The sum of these forces will be the quantity of electricity on the whole conductor. It remains the same, whether we change the form and the size of the conductor, or whether we bring it near or move it away from a second electrical conductor, so long as we keep it insulated, that is, do not discharge it.

A basis of reality for the notion of electric quantity seems also to present itself from another quarter. If a current, that is, in the usual view, a definite quantity of electricity per second, is sent through a column of acidulated water; in the direction of the positive stream, hydrogen, but in the opposite direction, oxygen is liberated at the extremities of the column. For a given quantity of electricity a given quantity of oxygen appears. You may picture the column of water as a column of hydrogen and a column of oxygen, fitted into each other, and may say the electric current is a chemical current and vice versa. Although this notion is more difficult to adhere to in the field of statical electricity and with non-decomposable conductors, its further development is by no means hopeless.

The concept quantity of electricity, thus, is not so aerial as might appear, but is able to conduct us with certainty through a multitude of varied phenomena, and is suggested to us by the facts in almost palpable form. We can collect electrical force in a body, measure it out with one body into another, carry it over from one body into another, just as we can collect a liquid in a vessel, measure it out with one vessel into another, or pour it from one into another.

For the analysis of mechanical phenomena, a metrical notion, derived from experience, and bearing the designation work, has proved itself useful. A machine can be set in motion only when the forces acting on it can perform work.

Fig. 35.

Let us consider, for example, a wheel and axle (Fig. 35) having the radii 1 and 2 metres, loaded respectively with the weights 2 and 1 kilogrammes. On turning the wheel and axle, the 1 kilogramme-weight, let us say, sinks two metres, while the 2 kilogramme-weight rises one metre. On both sides the product

KGR. M. KGR. M.

1 × 2 = 2 × 1.

is equal. So long as this is so, the wheel and axle will not move of itself. But if we take such loads, or so change the radii of the wheels, that this product (kgr. × metre) on displacement is in excess on one side, that side will sink. As we see, this product is characteristic for mechanical events, and for this reason has been invested with a special name, work.

In all mechanical processes, and as all physical processes present a mechanical side, in all physical processes, work plays a determinative part. Electrical forces, also, produce only changes in which work is performed. To the extent that forces come into play in electrical phenomena, electrical phenomena, be they what they may, extend into the domain of mechanics and are subject to the laws which hold in this domain. The universally adopted measure of work, now, is the product of the force into the distance through which it acts, and in the C. G. S. system, the unit of work is the action through one centimetre of a force which would impart in one second to a gramme-mass a velocity-increment of one centimetre, that is, in round numbers, the action through a centimetre of a pressure equal to the weight of a milligramme. From a positively charged body, electricity, yielding to the force of repulsion and performing work, flows off to the earth, providing conducting connexions exist. To a negatively charged body, on the other hand, the earth under the same circumstances gives off positive electricity. The electrical work possible in the interaction of a body with the earth, characterises the electrical condition of that body. We will call the work which must be expended on the unit quantity of positive electricity to raise it from the earth to the body K the potential of the body K.[31]

We ascribe to the body K in the C. G. S. system the potential +1, if we must expend the unit of work to raise the positive electrostatic unit of electric quantity from the earth to that body; the potential -1, if we gain in this procedure the unit of work; the potential 0, if no work at all is performed in the operation.

The different parts of one and the same electrical conductor in electrical equilibrium have the same potential, for otherwise the electricity would perform work and move about upon the conductor, and equilibrium would not have existed. Different conductors of equal potential, put in connexion with one another, do not exchange electricity any more than bodies of equal temperature in contact exchange heat, or in connected vessels, in which the same pressures exist, liquids flow from one vessel to the other. Exchange of electricity takes place only between conductors of different potentials, but in conductors of given form and position a definite difference of potential is necessary for a spark, which pierces the insulating air, to pass between them.

On being connected, every two conductors assume at once the same potential. With this the means is given of determining the potential of a conductor through the agency of a second conductor expressly adapted to the purpose called an electrometer, just as we determine the temperature of a body with a thermometer. The values of the potentials of bodies obtained in this way simplify vastly our analysis of their electrical behavior, as will be evident from what has been said.

Think of a positively charged conductor. Double all the electrical forces exerted by this conductor on a point charged with unit quantity, that is, double the quantity at each point, or what is the same thing, double the total charge. Plainly, equilibrium still subsists. But carry, now, the positive electrostatic unit towards the conductor. Everywhere we shall have to overcome double the force of repulsion we did before, everywhere we shall have to expend double the work. By doubling the charge of the conductor a double potential has been produced. Charge and potential go hand in hand, are proportional. Consequently, calling the total quantity of electricity of a conductor Q and its potential V, we can write: Q = CV, where C stands for a constant, the import of which will be understood simply from noting that C = Q/V.[32] But the division of a number representing the units of quantity of a conductor by the number representing its units of potential tells us the quantity which falls to the share of the unit of potential. Now the number C here we call the capacity of a conductor, and have substituted, thus, in the place of the old relative determination of capacity, an absolute determination.[33]

In simple cases the connexion between charge, potential, and capacity is easily ascertained. Our conductor, let us say, is a sphere of radius r, suspended free in a large body of air. There being no other conductors in the vicinity, the charge q will then distribute itself uniformly upon the surface of the sphere, and simple geometrical considerations yield for its potential the expression V = q/r. Hence, q/V = r; that is, the capacity of a sphere is measured by its radius, and in the C. G. S. system in centimetres.[34] It is clear also, since a potential is a quantity divided by a length, that a quantity divided by a potential must be a length.

Imagine (Fig. 36) a jar composed of two concentric conductive spherical shells of the radii r and r1, having only air between them. Connecting the outside sphere with the earth, and charging the inside sphere by means of a thin, insulated wire passing through the first, with the quantity Q, we shall have V = (r1-r)/(r1r)Q, and for the capacity in this case (r1r)/(r1-r), or, to take a specific example, if r = 16 and r1 = 19, a capacity of about 100 centimetres.

Fig. 36.

We shall now use these simple cases for illustrating the principle by which capacity and potential are determined. First, it is clear that we can use the jar composed of concentric spheres with its known capacity as our unit jar and by means of this ascertain, in the manner above laid down, the capacity of any given jar F. We find, for example, that 37 discharges of this unit jar of the capacity 100, just charges the jar investigated at the same striking distance, that is, at the same potential. Hence, the capacity of the jar investigated is 3700 centimetres. The large battery of the Prague physical laboratory, which consists of sixteen such jars, all of nearly equal size, has a capacity, therefore, of something like 50,000 centimetres, or the capacity of a sphere, a kilometre in diameter, freely suspended in atmospheric space. This remark distinctly shows us the great superiority which Leyden jars possess for the storage of electricity as compared with common conductors. In fact, as Faraday pointed out, jars differ from simple conductors mainly by their great capacity.

For determining potential, imagine the inner coating of a jar F, the outer coating of which communicates with the ground, connected by a long, thin wire with a conductive sphere K placed free in a large atmospheric space, compared with whose dimensions the radius of the sphere vanishes. (Fig. 37.) The jar and the sphere assume at once the same potential. But on the surface of the sphere, if that be sufficiently far removed from all other conductors, a uniform layer of electricity will be found. If the sphere, having the radius r, contains the charge q, its potential is V = q/r. If the upper half of the sphere be severed from the lower half and equilibrated on a balance with one of whose beams it is connected by silk threads, the upper half will be repelled from the lower half with the force P = q2/8r2 = 1/8V2. This repulsion P may be counter-balanced by additional weights placed on the beam-end, and so ascertained. The potential is then V = v(8P).[35]

That the potential is proportional to the square root of the force is not difficult to see. A doubling or trebling of the potential means that the charge of all the parts is doubled or trebled; hence their combined power of repulsion quadrupled or nonupled.

Let us consider a special case. I wish to produce the potential 40 on the sphere. What additional weight must I give to the half sphere in grammes that the force of repulsion shall maintain the balance in exact equilibrium? As a gramme weight is approximately equivalent to 1000 units of force, we have only the following simple example to work out: 40×40 = 8× 1000.x, where x stands for the number of grammes. In round numbers we get x = 0.2 gramme. I charge the jar. The balance is deflected; I have reached, or rather passed, the potential 40, and you see when I discharge the jar the associated spark.[36]

The striking distance between the knobs of a machine increases with the difference of the potential, although not proportionately to that difference. The striking distance increases faster than the potential difference. For a distance between the knobs of one centimetre on this machine the difference of potential is 110. It can easily be increased tenfold. Of the tremendous differences of potential which occur in nature some idea may be obtained from the fact that the striking distances of lightning in thunder-storms is counted by miles. The differences of potential in galvanic batteries are considerably smaller than those of our machine, for it takes fully one hundred elements to give a spark of microscopic striking distance.


We shall now employ the ideas reached to shed some light upon another important relation between electrical and mechanical phenomena. We shall investigate what is the potential energy, or the store of work, contained in a charged conductor, for example, in a jar.

If we bring a quantity of electricity up to a conductor, or, to speak less pictorially, if we generate by work electrical force in a conductor, this force is able to produce anew the work by which it was generated. How great, now, is the energy or capacity for work of a conductor of known charge Q and known potential V?

Imagine the given charge Q divided into very small parts q, q1, q2 ..., and these little parts successively carried up to the conductor. The first very small quantity q is brought up without any appreciable work and produces by its presence a small potential V'. To bring up the second quantity, accordingly, we must do the work q'V', and similarly for the quantities which follow the work q''V'', q'''V''', and so forth. Now, as the potential rises proportionately to the quantities added until the value V is reached, we have, agreeably to the graphical representation of Fig. 38, for the total work performed,

W = 1/2QV,

which corresponds to the total energy of the charged conductor. Using the equation Q = CV, where C stands for capacity, we also have,

W = 1/2CV2, or W = Q2/2C.

It will be helpful, perhaps, to elucidate this idea by an analogy from the province of mechanics. If we pump a quantity of liquid, Q, gradually into a cylindrical vessel (Fig. 39), the level of the liquid in the vessel will gradually rise. The more we have pumped in, the greater the pressure we must overcome, or the higher the level to which we must lift the liquid. The stored-up work is rendered again available when the heavy liquid Q, which reaches up to the level h, flows out. This work W corresponds to the fall of the whole liquid weight Q, through the distance h/2 or through the altitude of its centre of gravity. We have

W = 1/2Qh.

Further, since Q = Kh, or since the weight of the liquid and the height h are proportional, we get also

W = 1/2Kh2 and W = Q2/2K.

Fig. 38.
Fig. 39.

As a special case let us consider our jar. Its capacity is C = 3700, its potential V = 110; accordingly, its quantity Q = CV = 407,000 electrostatic units and its energy W = 1/2QV = 22,385,000 C. G. S. units of work.

The unit of work of the C. G. S. system is not readily appreciable by the senses, nor does it well admit of representation, as we are accustomed to work with weights. Let us adopt, therefore, as our unit of work the gramme-centimetre, or the gravitational pressure of a gramme-weight through the distance of a centimetre, which in round numbers is 1000 times greater than the unit assumed above; in this case, our numerical result will be approximately 1000 times smaller. Again, if we pass, as more familiar in practice, to the kilogramme-metre as our unit of work, our unit, the distance being increased a hundred fold, and the weight a thousand fold, will be 100,000 times larger. The numerical result expressing the work done is in this case 100,000 times less, being in round numbers 0.22 kilogramme-metre. We can obtain a clear idea of the work done here by letting a kilogramme-weight fall 22 centimetres.

This amount of work, accordingly, is performed on the charging of the jar, and on its discharge appears again, according to the circumstances, partly as sound, partly as a mechanical disruption of insulators, partly as light and heat, and so forth.

The large battery of the Prague physical laboratory, with its sixteen jars charged to equal potentials, furnishes, although the effect of the discharge is imposing, a total amount of work of only three kilogramme-metres.

In the development of the ideas above laid down we are not restricted to the method there pursued; in fact, that method was selected only as one especially fitted to familiarise us with the phenomena. On the contrary, the connexion of the physical processes is so multifarious that we can come at the same event from very different directions. Particularly are electrical phenomena connected with all other physical events; and so intimate is this connexion that we might justly call the study of electricity the theory of the general connexion of physical processes.

With respect to the principle of the conservation of energy which unites electrical with mechanical phenomena, I should like to point out briefly two ways of following up the study of this connexion.

A few years ago Professor Rosetti, taking an influence-machine, which he set in motion by means of weights alternately in the electrical and non-electrical condition with the same velocities, determined the mechanical work expended in the two cases and was thus enabled, after deducting the work of friction, to ascertain the mechanical work consumed in the development of the electricity.

I myself have made this experiment in a modified, and, as I think, more advantageous form. Instead of determining the work of friction by special trial, I arranged my apparatus so that it was eliminated of itself in the measurement and could consequently be neglected. The so-called fixed disk of the machine, the axis of which is placed vertically, is suspended somewhat like a chandelier by three vertical threads of equal lengths l at a distance r from the axis. Only when the machine is excited does this fixed disk, which represents a Prony's brake, receive, through its reciprocal action with the rotating disk, a deflexion a and a moment of torsion which is expressed by D = (Pr2/l)a, where P is the weight of the disk.[37] The angle a is determined by a mirror set in the disk. The work expended in n rotations is given by 2npD.

If we close the machine, as Rosetti did, we obtain a continuous current which has all the properties of a very weak galvanic current; for example, it produces a deflexion in a multiplier which we interpose, and so forth. We can directly ascertain, now, the mechanical work expended in the maintenance of this current.

If we charge a jar by means of a machine, the energy of the jar employed in the production of sparks, in the disruption of the insulators, etc., corresponds to a part only of the mechanical work expended, a second part of it being consumed in the arc which forms the circuit.[38] This machine, with the interposed jar, affords in miniature a picture of the transference of force, or more properly of work. And in fact nearly the same laws hold here for the economical coefficient as obtain for large dynamo-machines.

Another means of investigating electrical energy is by its transformation into heat. A long time ago (1838), before the mechanical theory of heat had attained its present popularity, Riess performed experiments in this field with the help of his electrical air-thermometer or thermo-electrometer.

Fig. 40.

If the discharge be conducted through a fine wire passing through the globe of the air-thermometer, a development of heat is observed proportional to the expression above-discussed W = 1/2QV. Although the total energy has not yet been transformed into measurable heat by this means, in as much as a portion is left behind in the spark in the air outside the thermometer, still everything tends to show that the total heat developed in all parts of the conductor and along all the paths of discharge is the equivalent of the work 1/2QV.

It is not important here whether the electrical energy is transformed all at once or partly, by degrees. For example, if of two equal jars one is charged with the quantity Q at the potential V the energy present is 1/2QV. If the first jar be discharged into the second, V, since the capacity is now doubled, falls to V/2. Accordingly, the energy 1/4QV remains, while 1/4QV is transformed in the spark of discharge into heat. The remainder, however, is equally distributed between the two jars so that each on discharge is still able to transform 1/8QV into heat.


We have here discussed electricity in the limited phenomenal form in which it was known to the inquirers before Volta, and which has been called, perhaps not very felicitously, "statical electricity." It is evident, however, that the nature of electricity is everywhere one and the same; that a substantial difference between statical and galvanic electricity does not exist. Only the quantitative circumstances in the two provinces are so widely different that totally new aspects of phenomena may appear in the second, for example, magnetic effects, which in the first remained unnoticed, whilst, vice versa, in the second field statical attractions and repulsions are scarcely appreciable. As a fact, we can easily show the magnetic effect of the current of discharge of an influence-machine on the galvanoscope although we could hardly have made the original discovery of the magnetic effects with this current. The statical distant action of the wire poles of a galvanic element also would hardly have been noticed had not the phenomenon been known from a different quarter in a striking form.

If we wished to characterise the two fields in their chief and most general features, we should say that in the first, high potentials and small quantities come into play, in the second small potentials and large quantities. A jar which is discharging and a galvanic element deport themselves somewhat like an air-gun and the bellows of an organ. The first gives forth suddenly under a very high pressure a small quantity of air; the latter liberates gradually under a very slight pressure a large quantity of air.

In point of principle, too, nothing prevents our retaining the electrostatical units in the domain of galvanic electricity and in measuring, for example, the strength of a current by the number of electrostatic units which flow per second through its cross-section. But this would be in a double aspect impractical. In the first place, we should totally neglect the magnetic facilities for measurement so conveniently offered by the current, and substitute for this easy means a method which can be applied only with difficulty and is not capable of great exactness. In the second place our units would be much too small, and we should find ourselves in the predicament of the astronomer who attempted to measure celestial distances in metres instead of in radii of the earth and the earth's orbit; for the current which by the magnetic C. G. S. standard represents the unit, would require a flow of some 30,000,000,000 electrostatic units per second through its cross-section. Accordingly, different units must be adopted here. The development of this point, however, lies beyond my present task.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page