Strata near some intrusive masses of granite converted into rocks identical with different members of the metamorphic series — Arguments hence derived as to the nature of plutonic action — Time may enable this action to pervade denser masses — From what kinds of sedimentary rock each variety of the metamorphic class may be derived — Certain objections to the metamorphic theory considered — Lamination of trachyte and obsidian due to motion — Whether some kinds of gneiss have become schistose by a similar action. It has been seen that geologists have been very generally led to infer, from the phenomena of joints and slaty cleavage, that mountain masses, of which the sedimentary origin is unquestionable, have been acted upon simultaneously by vast crystalline forces. That the structure of fossiliferous strata has often been modified by some general cause since their original deposition, and even subsequently to their consolidation and dislocation, is undeniable. These facts prepare us to believe that still greater changes may have been worked out by a greater intensity, or more prolonged development of the same agency, combined, perhaps, with other causes. Now we have seen that, near the immediate contact of granitic veins and volcanic dikes, very extraordinary alterations in rocks have taken place, more especially in the neighbourhood of granite. It will be useful here to add other illustrations, showing that a texture undistinguishable from that which characterizes the more crystalline metamorphic formations, has actually been superinduced in strata once fossiliferous. In the southern extremity of Norway there is a large district, on the west side of the fiord of Christiania, in which granite or syenite protrudes in mountain masses through fossiliferous strata, and usually sends veins into them at the point of contact. The stratified rocks, replete with shells and zoophytes, consist chiefly of shale, limestone, and some sandstone, and all these are invariably altered near the granite for a distance of from 50 to 400 yards. The aluminous shales are hardened and have become flinty. Sometimes they resemble jasper. Ribboned jasper is produced by the hardening of alternate layers of green and chocolate-coloured schist, each stripe faithfully representing the original lines of stratification. Nearer the granite the schist often contains crystals of hornblende, which are even met with in some places for a distance of several hundred yards from the junction; and this black hornblende is so abundant that eminent geologists, when passing through the country, have confounded it with the ancient hornblende-schist, subordinate to the great gneiss formation of Norway. Frequently, between the granite and the hornblende slate, above mentioned, grains of mica and crystalline Fig. 512. Altered zone of fossiliferous slate and limestone near granite. Christiania. The arrows indicate the dip, and the straight lines the strike, of the beds. The indurated and ribboned schists above mentioned bear a strong resemblance to certain shales of the coal found at Russell's Hall, near Dudley, where coal-mines have been on fire for ages. Beds of shale of considerable thickness, lying over the burning coal, have been baked and hardened so as to acquire a flinty fracture, the layers being alternately green and brick-coloured. The granite of Cornwall, in like manner, sends forth veins into a coarse argillaceous-schist, provincially termed killas. This killas is converted into hornblende-schist near the contact with the veins. These appearances are well seen at the junction of the granite and killas, in St. Michael's Mount, a small island nearly 300 feet high, situated in the bay, at a distance of about three miles from Penzance. The granite of Dartmoor, in Devonshire, says Sir H. De la Beche, We learn from the investigations of M. DufrÉnoy, that in the eastern Pyrenees there are mountain masses of granite posterior in date to the formations called lias and chalk of that district, and that these fossiliferous rocks are greatly altered in texture, and often charged with iron-ore, in the neighbourhood of the granite. Thus in the environs of St. Martin, near St. Paul de FÉnouillet, the chalky limestone becomes more crystalline and saccharoid as it approaches the granite, and loses all trace of the fossils which it previously contained in abundance. At some points, also, it becomes dolomitic, and filled with small veins of carbonate of iron, and spots of red iron-ore. At RanciÉ the lias nearest the granite is not only filled with iron-ore, but charged with pyrites, tremolite, garnet, and a new mineral somewhat allied to felspar, called, from the place in the Pyrenees where it occurs, "couzeranite." Now the alterations above described as superinduced in rocks by volcanic dikes and granite veins, prove incontestably that powers exist in nature capable of transforming fossiliferous into crystalline strata—powers capable of generating in them a new mineral character, similar, nay, often absolutely identical, with that of gneiss, mica-schist, and other stratified members of the hypogene series. The precise nature of these altering causes, which may provisionally be termed plutonic, is in a great degree obscure and doubtful; but their reality is no less clear, and we must suppose the influence of heat to be in some way connected with the transmutation, if, for reasons before explained, we concede the igneous origin of granite. The experiments of Gregory Watt, in fusing rocks in the laboratory, and allowing them to consolidate by slow cooling, prove distinctly that a rock need not be perfectly melted in order that a re-arrangement of its component particles should take place, and a partial crystallization ensue. We must not, however, imagine that heat alone, such as may be applied to a stone in the open air, can constitute all that is comprised in plutonic action. We know that volcanos in eruption not only emit fluid lava, but give off steam and other heated gases, which rush out in enormous volume, for days, weeks, or years continuously, and are even disengaged from lava during its consolidation. When the materials of granite, therefore, came in contact with the fossiliferous stratum M. Fournet, in his description of the metalliferous gneiss near Clermont, in Auvergne, states that all the minute fissures of the rock are quite saturated with free carbonic acid gas, which rises plentifully from the soil there and in many parts of the surrounding country. The various elements of the gneiss, with the exception of the quartz, are all softened; and new combinations of the acid, with lime, iron, and manganese, are continually in progress. Another illustration of the power of subterranean gases is afforded by the stufas of St. Calogero, situated in the largest of the Lipari Islands. Here, according to the description published by Hoffmann, horizontal strata of tuff, extending for 4 miles along the coast, and forming cliffs more than 200 feet high, have been discoloured in various places, and strangely altered by the "all-penetrating vapours." Dark clays have become yellow, or often snow-white; or have assumed a chequered or brecciated appearance, being crossed with ferruginous red stripes. In some places the fumaroles have been found by analysis to consist partly of sublimations of oxide of iron; but it also appears that veins of chalcedony and opal, and others of fibrous gypsum, have resulted from these volcanic exhalations. Although in all these instances we can only study the phenomena as exhibited at the surface, it is clear that the gaseous fluids must have made their way through the whole thickness of porous or fissured rocks, which intervene between the subterranean reservoirs of gas and the external air. The extent, therefore, of the earth's crust, which the vapours have permeated and are now permeating, may be thousands of fathoms in thickness, and their heating and modifying influence may be spread throughout the whole of this solid mass. We learn from Professor Bischoff that the steam of a hot spring at Aix-la-Chapelle, although its temperature is only from 133° to 167° F., has converted the surface of some blocks of black marble into a doughy mass. He conceives, therefore, that steam in the bowels of the earth having a temperature equal or even greater than the melting point of lava, and having an elasticity of which even Papin's digester can give but a faint idea, may convert rocks into liquid matter. The above observations are calculated to meet some of the objections which have been urged against the metamorphic theory on the ground of the small power of rocks to conduct heat; for it is well known that rocks, when dry and in the air, differ remarkably from metals in this respect. It has been asked how the changes which extend merely for a few feet from the contact of a dike could have penetrated through mountain masses of crystalline strata several miles in thickness. Now it has been stated that the plutonic influence of the syenite of Norway has sometimes altered fossiliferous strata for a distance of a quarter of a mile, both in the direction of their dip and of their strike. (See fig. 512. p. 474.) This is undoubtedly an extreme case; but is it not far more philosophical to suppose that this influence may, under favourable circumstances, affect denser masses, than to invent an entirely new cause to account for effects merely differing in quantity, and not in kind? The metamorphic theory does not require us to affirm that some contiguous mass of granite has been the altering power; but merely that an action, existing in the interior of the earth at an unknown depth, whether thermal, electrical, or other, analogous to that exerted near intruding masses of granite, has, in the course of vast and indefinite periods, and when rising perhaps from a large heated surface, reduced strata thousands of yards thick to a state of semi-fusion, so that on cooling they have become crystalline, like gneiss. Granite may have been another result of the same action in a higher state of intensity, by which a thorough fusion has been produced; Some geologists are of opinion, that the alternate layers of mica and quartz, or mica and felspar, or lime and felspar, are so much more distinct, in certain metamorphic rocks, than the ingredients composing alternate layers in many sedimentary deposits, that the similar particles must be supposed to have exerted a molecular attraction for each other, and to have thus congregated together in layers more distinct in mineral composition than before they were crystallized. In considering, then, the various data already enumerated, the forms of stratification in metamorphic rocks, their passage on the one hand into the fossiliferous, and on the other into the plutonic formations, and the conversions which can be ascertained to have occurred in the vicinity of granite, we may conclude that gneiss and mica-schist may be nothing more than altered micaceous and argillaceous sandstones that granular quartz may have been derived from siliceous sandstone, and compact quartz from the same materials. Clay-slate may be altered shale, and granular marble may have originated in the form of ordinary limestone, replete with shells and corals, which have since been obliterated; and, lastly, calcareous sands and marls may have been changed into impure crystalline limestones. "Hornblende-schist," says Dr. MacCulloch, "may at first have been mere clay; for clay or shale is found altered by trap into Lydian stone, a substance differing from hornblende-schist almost solely in compactness and uniformity of texture." The anthracite and plumbago associated with hypogene rocks may have been coal; for not only is coal converted into anthracite in the vicinity of some trap dikes, but we have seen that a like change has taken place generally even far from the contact of igneous rocks, in the disturbed region of the Appalachians. The total absence of any trace of fossils has inclined many geologists to attribute the origin of crystalline strata to a period antecedent to the existence of organic beings. Admitting, they say, the obliteration, in some cases, of fossils by plutonic action, we might still expect that traces of them would oftener occur in certain ancient systems of slate, in which, as in Cumberland, some conglomerates occur. But in urging this argument, it seems to have been forgotten that there are stratified formations of enormous thickness, and of various ages, and some of them very modern, all formed after the earth had become the abode of living creatures, which are, nevertheless, in certain districts, entirely destitute of all vestiges of organic bodies. In some, the traces of fossils may have been effaced by water and acids, at many successive periods; and it is clear, that, the older the stratum, the greater is the chance of its being non-fossiliferous, even if it has escaped all metamorphic action. It has been also objected to the metamorphic theory, that the chemical composition of the secondary strata differs essentially from that of the crystalline schists, into which they are supposed to be convertible. Thus the argillaceous shales and slates of the Old Red sandstone, in Forfarshire and other parts of Scotland, are so much charged with alkali, derived from triturated felspar, that, instead of hardening when exposed to fire, they sometimes melt into a glass. They contain no lime, but appear to consist of extremely minute grains of the various ingredients of granite, which are distinctly visible in the coarser-grained varieties, and in almost all the interposed sandstones. These laminated clays and shales might certainly, if crystallized, resemble in composition many of the primary strata. There is also potash in fossil vegetable remains, and soda in the salts by which strata are sometimes so largely impregnated, as in Patagonia. There are geologists, however, of high authority, who admit the metamorphic origin of gneiss and mica-schist even on a grand scale in some mountain-chains, and who nevertheless believe that gneiss has in some instances been an eruptive rock, deriving its lamination from motion when in a fluid or viscous state. Mr. Scrope, in his description of the Ponza Islands, ascribes "the zoned structure of the Hungarian perlite (a semi-vitreous trachyte) to its having subsided, in obedience to the impulse of its own gravity, down a slightly inclined plane, while possessed of an imperfect fluidity. In the islands of Ponza and Palmarola, the direction of the zones is more frequently vertical than horizontal, because the mass was impelled from below upwards." M. Elie de Beaumont, while he regards the greater part of the gneiss and mica-schist of the Alps as sedimentary strata altered by plutonic action, still conceives that some of the Alpine gneiss may have been erupted, or, in other words, may be granite drawn out into parallel laminÆ in the manner of trachyte as above alluded to. Opinions such as these, and others which might be cited, prove the difficulty of arriving at clear theoretical views on this subject. I But although the cause last-mentioned may, in some instances, be a "vera causa," as applied to gneiss and mica-schist, I believe it to be an exception to the general rule. Nor would it, I conceive, produce that kind of irregular parallelism in the laminÆ which belongs to so many of the hypogene rocks of the Grampians, Pyrenees, and the White mountains of North America, where I have chiefly studied them. But it will be impossible for the reader duly to appreciate the propriety of the term metamorphic, as applied to the strata formerly called primitive, until I have shown, in the next chapter, at how many distinct periods these crystalline strata have been formed. |