General aspect of granite — Decomposing into spherical masses — Rude columnar structure — Analogy and difference of volcanic and plutonic formations — Minerals in granite, and their arrangement — Graphic and porphyritic granite — Mutual penetration of crystals of quartz and felspar — Occasional minerals — Syenite — Syenitic, talcose, and schorly granites — Eurite — Passage of granite into trap — Examples near Christiania and in Aberdeenshire — Analogy in composition of trachyte and granite — Granite veins in Glen Tilt, Cornwall, the Valorsine, and other countries — Different composition of veins from main body of granite — Metalliferous veins in strata near their junction with granite — Apparent isolation of nodules of granite — Quartz veins — Whether plutonic rocks are ever overlying — Their exposure at the surface due to denudation. The plutonic rocks may be treated of next in order, as they are most nearly allied to the volcanic class already considered. I have described, in the first chapter, these plutonic rocks as the unstratified division of the crystalline or hypogene formations, and have stated that they differ from the volcanic rocks, not only by their more crystalline texture, but also by the absence of tuffs and breccias, which are the products of eruptions at the earth's surface, or beneath seas of inconsiderable depth. They differ also by the absence of pores or cellular cavities, to which the expansion of the entangled gases gives rise in ordinary lava. From these and other peculiarities it has been inferred, that the granites have been formed at considerable depths in the earth, and have cooled and crystallized slowly under great pressure, where the contained gases could not expand. The volcanic rocks, on the contrary, although they also have risen up from below, have cooled from a melted state more rapidly upon or near the surface. From this hypothesis of the great depth at which the granites originated, has been derived the name of "Plutonic rocks." The beginner will easily conceive that the influence of subterranean heat may extend downwards from the crater of every active volcano to a great depth below, perhaps several miles or leagues, and the effects which are produced deep in the bowels of the earth may, or rather must be, distinct; so that volcanic and plutonic rocks, each different in texture, and sometimes even in composition, may originate simultaneously, the one at the surface, the other far beneath it. By some writers, all the rocks now under consideration have been comprehended under the name of granite, which is, then, understood to embrace a large family of crystalline and compound rocks, usually found underlying all other formations; whereas we have seen that trap very commonly overlies strata of different ages. Granite often preserves a very uniform character throughout a wide range of territory, forming hills of a peculiar rounded form, usually clad with Fig. 484. Mass of granite near the Sharp Tor, Cornwall. Although it is the general peculiarity of granite to assume no definite shapes, it is nevertheless occasionally subdivided by fissures, so as to assume a cuboidal, and even a columnar, structure. Examples of these appearances may be seen near the Land's End, in Cornwall. (See figure.) Fig. 485. Granite having a cuboidal and rude columnar structure, Land's End, Cornwall. The plutonic formations also agree with the volcanic, in having veins or ramifications proceeding from central masses into the adjoining Fig. 486. Gneiss. (See description, p. 464.) Felspar, quartz, and mica are usually considered as the minerals essential to granite, the felspar being most abundant in quantity, and the proportion of quartz exceeding that of mica. These minerals are united in what is termed a confused crystallization; that is to say, there is no regular arrangement of the crystals in granite, as in gneiss (see fig. 486.), except in the variety termed graphic granite, which occurs mostly in granitic veins. This variety is a compound of felspar and quartz, so arranged as to produce an imperfect laminar structure. The crystals of felspar appear to have been first formed, leaving between them the space now occupied by the darker-coloured quartz. This mineral, when a section is made at right angles to the alternate plates of felspar and quartz, presents broken lines, which have been compared to Hebrew characters. Graphic granite.
As a general rule, quartz, in a compact or amorphous state, forms a vitreous mass, serving as the base in which felspar and mica have Fig. 489. Porphyritic granite. Land's End, Cornwall. Porphyritic granite.—This name has been sometimes given to that variety in which large crystals of felspar, sometimes more than 3 inches in length, are scattered through an ordinary base of granite. An example of this texture may be seen in the granite of the Land's End, in Cornwall (fig. 489.). The two larger prismatic crystals in this drawing represent felspar, smaller crystals of which are also seen, similar in form, scattered through the base. In this base also appear black specks of mica, the crystals of which have a more or less perfect hexagonal outline. The remainder of the mass is quartz, the translucency of which is strongly contrasted to the opaqueness of the white felspar and black mica. But neither the transparency of the quartz, nor the silvery lustre of the mica, can be expressed in the engraving. Syenite.—When hornblende is the substitute for mica, which is very commonly the case, the rock becomes Syenite: so called from the celebrated ancient quarries of Syene in Egypt. It has all the appearance of ordinary granite, except when mineralogically examined in hand specimens, and is fully entitled to rank as a geological member of the same plutonic family as granite. Syenite, however, after maintaining the granitic character throughout extensive regions, is not uncommonly found to lose its quartz, and to pass insensibly into syenitic greenstone, a rock of the trap family. Werner considered syenite as a binary compound of felspar and hornblende, and regarded quartz as merely one of its occasional minerals. Syenitic-granite.—The quadruple compound of quartz, felspar, mica, and hornblende, may be so termed. This rock occurs in Scotland and in Guernsey. Talcose granite, or Protogine of the French, is a mixture of felspar, quartz, and talc. It abounds in the Alps, and in some parts of Cornwall, producing by its decomposition the china clay, more than 12,000 tons of which are annually exported from that country for the potteries. Schorl rock, and schorly granite.—The former of these is an aggregate of schorl, or tourmaline, and quartz. When felspar and mica are also present, it may be called schorly granite. This kind of granite is comparatively rare. Eurite.—A rock in which all the ingredients of granite are blended into a finely granular mass. Crystals of quartz and mica are sometimes scattered through the base of Eurite. Pegmatite.—A name given by French writers to a variety of granite; a granular mixture of quartz and felspar; frequent in granite veins; passes into graphic granite. All these granites pass into certain kinds of trap, a circumstance which affords one of many arguments in favour of what is now the prevailing opinion, that the granites are also of igneous origin. The contrast of the most crystalline form of granite, to that of the most common and earthy trap, is undoubtedly great; but each member of the volcanic class is capable of becoming porphyritic, and the base of the porphyry may be more and more crystalline, until the mass The minerals which constitute alike the granitic and volcanic rocks consist, almost exclusively, of seven elements, namely, silica, alumina, magnesia, lime, soda, potash, and iron; and these may sometimes exist in about the same proportions in a porous lava, a compact trap, or a crystalline granite. It may perhaps be found, on farther examination—for on this subject we have yet much to learn—that the presence of these elements in certain proportions is more favourable than in others to their assuming a crystalline or true granitic structure; but it is also ascertained by experiment, that the same materials may, under different circumstances, form very different rocks. The same lava, for example, may be glassy, or scoriaceous, or stony, or porphyritic, according to the more or less rapid rate at which it cools; and some trachytes and syenitic-greenstones may doubtless form granite and syenite, if the crystallization take place slowly. It has also been suggested that the peculiar nature and structure of granite may be due to its retaining in it that water which is seen to escape from lavas when they cool slowly, and consolidate in the atmosphere. Boutigny's experiments have shown that melted matter, at a white heat, requires to have its temperature lowered before it can vapourize water; and such discoveries, if they fail to explain the manner in which granites have been formed, serve at least to remind us of the entire distinctness of the conditions under which plutonic and volcanic rocks must be produced. It would be easy to multiply examples and authorities to prove the gradation of the granitic into the trap rocks. On the western side of the fiord of Christiania, in Norway, there is a large district of trap, chiefly greenstone-porphyry, and syenitic-greenstone, resting on fossiliferous strata. To this, on its southern limit, succeeds a region equally extensive of syenite, the passage from the volcanic to the plutonic rock being so gradual that it is impossible to draw a line of demarcation between them. "The ordinary granite of Aberdeenshire," says Dr. MacCulloch, "is the usual ternary compound of quartz, felspar, and mica; but sometimes hornblende is substituted for the mica. But in many places a variety occurs which is composed simply of felspar and hornblende; and in examining more minutely this duplicate compound, it is observed in some places to assume a fine grain, and at length to become undistinguishable from the greenstones of the trap family. It also passes in the same uninterrupted manner into a basalt, and at length into a soft claystone, with a schistose tendency on exposure, in no respect differing from those of the trap islands of the western coast." Junction of granite and argillaceous schist in Glen Tilt. (MacCulloch.) I have already hinted at the close analogy in the forms of certain granitic and trappean veins; and it will be found that strata penetrated by plutonic rocks have suffered changes very similar to those exhibited near the contact of volcanic dikes. Thus, in Glen Tilt, in Scotland, alternating strata of limestone and argillaceous schist come in contact with a mass of granite. The contact does not take place as might have been looked for, if the granite had been formed there before the strata were deposited, in which case the section would have appeared as in fig. 490.; but the union is as represented in fig. 491., the undulating outline of the granite intersecting different strata, and occasionally intruding itself in tortuous veins into the beds of clay-slate and limestone, from which it differs so remarkably in composition. The limestone is sometimes changed in character by the proximity of the granitic mass or its veins, and acquires a more compact texture, like that of hornstone or chert, with a splintery fracture, effervescing feebly with acids. The annexed diagram (fig. 492.) represents another junction, in the same district, where the granite sends forth so many veins as to reticulate the limestone and schist, the veins diminishing towards their termination to the thickness of a leaf of paper or a thread. In some places fragments of granite appear entangled, as it were, in the limestone, and are not visibly connected with any larger mass; while sometimes, on the other hand, a lump of the limestone is found in the midst of the granite. The ordinary colour of the limestone of Glen Tilt is lead blue, and its texture large-grained and highly crystalline; but where it approximates to the granite, particularly where it is penetrated by the smaller veins, the crystalline texture disappears, and it assumes an appearance exactly resembling that of hornstone. The associated argillaceous schist often passes into hornblende slate, where it approaches very near to the granite. Fig. 492. Junction of granite and limestone in Glen Tilt. (MacCulloch.)
The conversion of the limestone in these and many other instances into a siliceous rock, effervescing slowly with acids, would be difficult of explanation, were it not ascertained that such limestones are always impure, containing grains of quartz, mica, or felspar disseminated through them. The elements of these minerals, when the rock has been subjected to great heat, may have been fused, and so spread more uniformly through the whole mass. Fig. 493. Granite veins traversing clay slate. Table Mountain, Cape of Good Hope. In the plutonic, as in the volcanic rocks, there is every gradation from a tortuous vein to the most regular form of a dike, such as intersect the tuffs and lavas of Vesuvius and Etna. Dikes of granite may be seen, among other places, on the southern flank of Mount Battock, one of the Grampians, the opposite walls sometimes preserving an exact parallelism for a considerable distance. As a general rule, however, granite veins in all quarters of the globe are more sinuous in their course than those of trap. They present similar shapes at the most northern point of Scotland, and the southernmost extremity of Africa, as the annexed drawings will show. In Shetland there are two kinds of granite. One of them, composed of hornblende, mica, felspar, and quartz, is of a dark colour, and is seen underlying gneiss. The other is a red granite, which penetrates the dark variety everywhere in veins. Fig. 494. Granite veins traversing gneiss, Cape Wrath. (MacCulloch.) Fig. 495. Granite veins traversing gneiss at Cape Wrath, in Scotland. (MacCulloch.) The accompanying sketches will explain the manner in which granite veins often ramify and cut each other (figs. 494. and 495.). They represent the manner in which the gneiss at Cape Wrath, in Sutherlandshire, is intersected by veins. Their light colour, strongly contrasted with that of the hornblende-schist, here associated with the gneiss, renders them very conspicuous. Granite very generally assumes a finer grain, and undergoes a change in mineral composition, in the veins which it sends into contiguous rocks. Thus, according to Professor Sedgwick, the main body of the Cornish granite is an aggregate of mica, quartz, and felspar; but the veins are sometimes without mica, being a granular aggregate of quartz and felspar. In other varieties quartz prevails to the almost entire exclusion both of felspar and mica; in others, the mica and quartz both disappear, and the vein is simply composed of white granular felspar. Fig. 496. Granite veins passing through hornblende slate, Carnsilver Cove, Cornwall. In the Valorsine, a valley not far from Mont Blanc in Switzerland, an ordinary granite, consisting of felspar, quartz, and mica, sends forth veins into a talcose gneiss (or stratified protogine), and in some places lateral ramifications are thrown off from the principal veins at right angles (see fig. 497.), the veins, especially the minute ones, being finer grained than the granite in mass. Fig. 497. Veins of granite in talcose gneiss. (L. A. Necker.) It is here remarked, that the schist and granite, as they approach, seem to exercise a reciprocal influence on each other, for both undergo a modification of mineral character. The granite, still remaining unstratified, becomes charged with green particles; and the talcose gneiss assumes a granitiform structure without losing its stratification. Granite, syenite, and those porphyries which have a granitiform structure, in short all plutonic rocks, are frequently observed to contain metals, at or near their junction with stratified formations. On the other hand, the veins which traverse stratified rocks are, as a general law, more metalliferous near such junctions than in other positions. Hence it has been inferred that these metals may have been spread in a gaseous form through the fused mass, and that the contact of another rock, in a different state of temperature, or sometimes the existence of rents in other rocks in the vicinity, may have caused the sublimation of the metals. There are many instances, as at Markerud, near Christiania, in Norway, where the strike of the beds has not been deranged throughout a large area by the intrusion of granite, both in large masses and in veins. This fact is considered by some geologists to militate against the theory of the forcible injection of granite in a fluid state. But it may be stated in reply, that ramifying dikes of trap, which almost all now admit to have been once fluid, pass through the same fossiliferous strata, near Christiania, without deranging their strike or dip. Fig. 498. General view of junction of granite and schist of the Valorsine. (L. A. Necker.) The real or apparent isolation of large or small masses of granite detached from the main body, as at a b, fig. 498., and above, fig. 492., and a, fig. 497., has been thought by some writers to be irreconcilable with the doctrine usually taught respecting veins; but many of them may, in fact, be sections of root-shaped prolongations of granite; while, in other cases, they may in reality be detached portions of rock having the plutonic structure. For there may have been spots in the midst of the invaded strata, in which there was an assemblage of materials more fusible than the rest, or more fitted to combine readily into some form of granite. Fig. 499. a, b. Quartz vein passing through gneiss and greenstone, Tronstad Strand, near Christiania. Fig. 500. Euritic porphyry alternating with primary fossiliferous strata, near Christiania. We have seen that the volcanic formations have been called overlying, because they not only penetrate others, but spread over them. Mr. Necker has proposed to call the granites the underlying igneous rocks, and the distinction here indicated is highly characteristic. It was indeed supposed by some of the earlier observers, that the granite of Christiania, in Norway, was intercalated in mountain masses between the primary or paleozoic strata of that country, so as to overlie fossiliferous shale and limestone. But although the granite sends veins into these fossiliferous rocks, and is decidedly posterior in origin, its actual superposition in mass has been disproved by Professor Keilhau, whose observations on this controverted point I had opportunities in 1837 of verifying. There are, however, on a smaller scale, certain beds of euritic porphyry, some a few feet, others many yards in thickness, which pass into granite, and deserve perhaps to be classed as plutonic rather than trappean rocks, which may truly be described as interposed conformably between fossiliferous strata, as the porphyries (a c, fig. 500.), which divide the bituminous shales and argillaceous limestones, f f. But some of these same porphyries are partially unconformable, as b, and may lead us to suspect that the others also, It has been already hinted that the heat, which in every active volcano extends downwards to indefinite depths, must produce simultaneously very different effects near the surface, and far below it; and we cannot suppose that rocks resulting from the crystallizing of fused matter under a pressure of several thousand feet, much less miles, of the earth's crust can resemble those formed at or near the surface. Hence the production at great depths of a class of rocks analogous to the volcanic, and yet differing in many particulars, might almost have been predicted, even had we no plutonic formations to account for. How well these agree, both in their positive and negative characters, with the theory of their deep subterranean origin, the student will be able to judge by considering the descriptions already given. It has, however, been objected, that if the granitic and volcanic rocks were simply different parts of one great series, we ought to find in mountain chains volcanic dikes passing upwards into lava, and downwards into granite. But we may answer, that our vertical sections are usually of small extent; and if we find in certain places a transition from trap to porous lava, and in others a passage from granite to trap, it is as much as could be expected of this evidence. The prodigious extent of denudation which has been already demonstrated to have occurred at former periods, will reconcile the student to the belief that crystalline rocks of high antiquity, although deep in the earth's crust when originally formed, may have become uncovered and exposed at the surface. Their actual elevation above the sea may be referred to the same causes to which we have attributed the upheaval of marine strata, even to the summits of some mountain chains. But to these and other topics, I shall revert when speaking, in the next chapter, of the relative ages of different masses of granite. |