CHAPTER VIII. CHRONOLOGICAL CLASSIFICATION OF ROCKS.

Previous

Aqueous, plutonic, volcanic, and metamorphic rocks, considered chronologically — Lehman's division into primitive and secondary — Werner's addition of a transition class — Neptunian theory — Hutton on igneous origin of granite — How the name of primary was still retained for granite — The term "transition," why faulty — The adherence to the old chronological nomenclature retarded the progress of geology — New hypothesis invented to reconcile the igneous origin of granite to the notion of its high antiquity — Explanation of the chronological nomenclature adopted in this work, so far as regards primary, secondary, and tertiary periods.

In the first chapter it was stated that the four great classes of rocks, the aqueous, the volcanic, the plutonic, and the metamorphic, would each be considered not only in reference to their mineral characters, and mode of origin, but also to their relative age. The preservation of the shelves may have required, says Darwin, the quick growth of green turf on a good soil; their abrupt cessation may mark the place where the soil was barren, and when a green sward formed slowly. In regard to the aqueous rocks, we have already seen that they are stratified, that some are calcareous, others argillaceous or siliceous, some made up of sand, others of pebbles; that some contain freshwater, others marine fossils, and so forth; but the student has still to learn which rocks, exhibiting some or all of these characters, have originated at one period of the earth's history, and which at another.

To determine this point in reference to the fossiliferous formations is more easy than in any other class, and it is therefore the most convenient and natural method to begin by establishing a chronology for these fossiliferous strata, and then to endeavour to refer to the same divisions, the several groups of plutonic, volcanic, and metamorphic rocks. This system of classification is not only recommended by its greater clearness and facility of application, but is also best fitted to strike the imagination by bringing into one view the past changes of the inorganic world, and the contemporaneous revolutions of the organic creation. For the sedimentary formations of successive periods are most readily distinguished by the different species of fossil animals and plants which they inclose, and of which one race after another has flourished and then disappeared from the earth.

But before entering specially on the subdivisions of the aqueous rocks arranged according to the order of time, it will be desirable to say a few words on the chronology of rocks in general, although in doing so we shall be unavoidably led to allude to some classes of phenomena which the beginner must not yet expect fully to comprehend.

It was for many years a received opinion, that the formation of entire families of rocks, such as the plutonic and those crystalline schists spoken of in the first chapter as metamorphic, began and ended before any members of the aqueous and volcanic orders were produced; and although this idea has long been modified, and is nearly exploded, it will be necessary to give some account of the ancient doctrine, in order that beginners may understand whence many prevailing opinions, and some part of the nomenclature of geology, still partially in use, was derived.

About the middle of the last century, Lehman, a German miner, proposed to divide rocks into three classes, the first and oldest to be called primitive, comprising the hypogene, or plutonic and metamorphic rocks; the next to be termed secondary, comprehending the aqueous or fossiliferous strata; and the remainder, or third class, corresponding to our alluvium, ancient and modern, which he referred to "local floods, and the deluge of Noah." In the primitive class, he said, such as granite and gneiss, there are no organic remains, nor any signs of materials derived from the ruins of pre-existing rocks. Their origin, therefore, may have been purely chemical, antecedent to the creation of living beings, and probably coeval with the birth of the world itself. The secondary formations, on the contrary, which often contain sand, pebbles, and organic remains, must have been mechanical deposits, produced after the planet had become the habitation of animals and plants. This bold generalization, although anticipated in some measure by Steno, a century before, in Italy, formed at the time an important step in the progress of geology, and sketched out correctly some of the leading divisions into which rocks may be separated. About half a century later, Werner, so justly celebrated for his improved methods of discriminating the mineralogical characters of rocks, attempted to improve Lehman's classification, and with this view intercalated a class, called by him "the transition formations," between the primitive and secondary. Between these last he had discovered, in northern Germany, a series of strata, which in their mineral peculiarities were of an intermediate character, partaking in some degree of the crystalline nature of micaceous schist and clay-slate, and yet exhibiting here and there signs of a mechanical origin and organic remains. For this group, therefore, forming a passage between Lehman's primitive and secondary rocks, the name of Übergang or transition was proposed. They consisted principally of clay-slate and an argillaceous sandstone, called grauwacke, and partly of calcareous beds. It happened in the district which Werner first investigated, that both the primitive and transition strata were highly inclined, while the beds of the newer fossiliferous rocks, the secondary of Lehman, were horizontal. To these latter, therefore, he gave the name flÖtz, or "a level floor;" and every deposit more modern than the chalk, which was classed as the uppermost of the flÖtz series, was designated "the overflowed land," an expression which may be regarded as equivalent to alluvium, although under this appellation were confounded all the strata afterwards called tertiary, of which Werner had scarcely any knowledge. As the followers of Werner soon discovered that the inclined position of the "transition beds," and the horizontality of the flÖtz, or newer fossiliferous strata, were mere local accidents, they soon abandoned the term flÖtz; and the four divisions of the Wernerian school were then named primitive, transition, secondary, and alluvial.

As to the trappean rocks, although their igneous origin had been already demonstrated by Arduino, Fortis, Faujas, and others, and especially by Desmarest, they were all regarded by Werner as aqueous, and as mere subordinate members of the secondary series.[91-A]

This theory of Werner's was called the "Neptunian," and for many years enjoyed much popularity. It assumed that the globe had been at first invested by an universal chaotic ocean, holding the materials of all rocks in solution. From the waters of this ocean, granite, gneiss, and other crystalline formations, were first precipitated; and afterwards, when the waters were purged of these ingredients, and more nearly resembled those of our actual seas, the transition strata were deposited. These were of a mixed character, not purely chemical, because the waves and currents had already begun to wear down solid land, and to give rise to pebbles, sand, and mud; nor entirely without fossils, because a few of the first marine animals had begun to exist. After this period, the secondary formations were accumulated in waters resembling those of the present ocean, except at certain intervals, when, from causes wholly unexplained, a partial recurrence of the "chaotic fluid" took place, during which various trap rocks, some highly crystalline, were formed. This arbitrary hypothesis rejected all intervention of igneous agency, volcanos being regarded as modern, partial, and superficial accidents, of trifling account among the great causes which have modified the external structure of the globe.

Meanwhile Hutton, a contemporary of Werner, began to teach, in Scotland, that granite as well as trap was of igneous origin, and had at various periods intruded itself in a fluid state into different parts of the earth's crust. He recognized and faithfully described many of the phenomena of granitic veins, and the alterations produced by them on the invaded strata, which will be treated of in the thirty-second chapter. He, moreover, advanced the opinion, that the crystalline strata called primitive had not been precipitated from a primÆval ocean, but were sedimentary strata altered by heat. In his writings, therefore, and in those of his illustrator, Playfair, we find the germ of that metamorphic theory which has been already hinted at in the first chapter, and which will be more fully expounded in the thirty-fourth and thirty-fifth chapters.

At length, after much controversy, the doctrine of the igneous origin of trap and granite made its way into general favour; but although it was, in consequence, admitted that both granite and trap had been produced at many successive periods, the term primitive or primary still continued to be applied to the crystalline formations in general, whether stratified, like gneiss, or unstratified, like granite. The pupil was told that granite was a primary rock, but that some granites were newer than certain secondary formations; and in conformity with the spirit of the ancient language, to which the teacher was still determined to adhere, a desire was naturally engendered of extenuating the importance of those more modern granites, the true dates of which new observations were continually bringing to light.

A no less decided inclination was shown to persist in the use of the term "transition," after it had been proved to be almost as faulty in its original application as that of flÖtz. The name of transition, as already stated, was first given by Werner, to designate a mineral character, intermediate between the highly crystalline or metamorphic state and that of an ordinary fossiliferous rock. But the term acquired also from the first a chronological import, because it had been appropriated to sedimentary formations, which, in the Hartz and other parts of Germany, were more ancient than the oldest of the secondary series, and were characterized by peculiar fossil zoophytes and shells. When, therefore, geologists found in other districts stratified rocks occupying the same position, and inclosing similar fossils, they gave to them also the name of transition, according to rules which will be explained in the next chapter; yet, in many cases, such rocks were found not to exhibit the same mineral texture which Werner had called transition. On the contrary, many of them were not more crystalline than different members of the secondary class; while, on the other hand, these last were sometimes found to assume a semi-crystalline and almost metamorphic aspect, and thus, on lithological grounds, to deserve equally the name of transition. So remarkably was this the case in the Swiss Alps, that certain rocks, which had for years been regarded by some of the most skilful disciples of Werner to be transition, were at last acknowledged, when their relative position and fossils were better understood, to belong to the newest of the secondary groups; nay, some of them have actually been discovered to be members of the lower tertiary series! If, under such circumstances, the name of transition was retained, it is clear that it ought to have been applied without reference to the age of strata, and simply as expressive of a mineral peculiarity. The continued appropriation of the term to formations of a given date, induced geologists to go on believing that the ancient strata so designated bore a less resemblance to the secondary than is really the case, and to imagine that these last never pass, as they frequently do, into metamorphic rocks.

The poet Waller, when lamenting over the antiquated style of Chaucer, complains that—

We write in sand, our language grows,
And, like the tide, our work o'erflows.

But the reverse is true in geology; for here it is our work which continually outgrows the language. The tide of observation advances with such speed that improvements in theory outrun the changes of nomenclature; and the attempt to inculcate new truths by words invented to express a different or opposite opinion, tends constantly, by the force of association, to perpetuate error; so that dogmas renounced by the reason still retain a strong hold upon the imagination.

In order to reconcile the old chronological views with the new doctrine of the igneous origin of granite, the following hypothesis was substituted for that of the Neptunists. Instead of beginning with an aqueous menstruum or chaotic fluid, the materials of the present crust of the earth were supposed to have been at first in a state of igneous fusion, until part of the heat having been diffused into surrounding space, the surface of the fluid consolidated, and formed a crust of granite. This covering of crystalline stone, which afterwards grew thicker and thicker as it cooled, was so hot, at first, that no water could exist upon it; but as the refrigeration proceeded, the aqueous vapour in the atmosphere was condensed, and, falling in rain, gave rise to the first thermal ocean. So high was the temperature of this boiling sea, that no aquatic beings could inhabit its waters, and its deposits were not only devoid of fossils, but, like those of some hot springs, were highly crystalline. Hence the origin of the primary or crystalline strata,—gneiss, mica-schist, and the rest.

Afterwards, when the granitic crust had been partially broken up, land and mountains began to rise above the waters, and rains and torrents ground down rock, so that sediment was spread over the bottom of the seas. Yet the heat still remaining in the solid supporting substances was sufficient to increase the chemical action exerted by the water, although not so intense as to prevent the introduction and increase of some living beings. During this state of things some of the residuary mineral ingredients of the primÆval ocean were precipitated, and formed deposits (the transition strata of Werner), half chemical and half mechanical, and containing a few fossils.

By this new theory, which was in part a revival of the doctrine of Leibnitz, published in 1680, on the igneous origin of the planet, the old ideas respecting the priority of all crystalline rocks to the creation of organic beings, were still preserved; and the mistaken notion that all the semi-crystalline and partially fossiliferous rocks belonged to one period, while all the earthy and uncrystalline formations originated at a subsequent epoch, was also perpetuated.

It may or may not be true, as the great Leibnitz imagined, that the whole planet was once in a state of liquefaction by heat; but there are certainly no geological proofs that the granite which constitutes the foundation of so much of the earth's crust was ever at once in a state of universal fusion. On the contrary, all our evidence tends to show that the formation of granite, like the deposition of the stratified rocks, has been successive, and that different portions of granite have been in a melted state at distinct and often distant periods. One mass was solid, and had been fractured, before another body of granitic matter was injected into it, or through it, in the form of veins. Some granites are more ancient than any known fossiliferous rocks; others are of secondary; and some, such as that of Mont Blanc and part of the central axis of the Alps, of tertiary origin. In short, the universal fluidity of the crystalline foundations of the earth's crust, can only be understood in the same sense as the universality of the ancient ocean. All the land has been under water, but not all at one time; so all the subterranean unstratified rocks to which man can obtain access have been melted, but not simultaneously.

In the present work the four great classes of rocks, the aqueous, plutonic, volcanic, and metamorphic, will form four parallel, or nearly parallel, columns in one chronological table. They will be considered as four sets of monuments relating to four contemporaneous, or nearly contemporaneous, series of events. I shall endeavour, in a subsequent chapter on the plutonic rocks, to explain the manner in which certain masses belonging to each of the four classes of rocks may have originated simultaneously at every geological period, and how the earth's crust may have been continually remodelled, above and below, by aqueous and igneous causes, from times indefinitely remote. In the same manner as aqueous and fossiliferous strata are now formed in certain seas or lakes, while in other places volcanic rocks break out at the surface, and are connected with reservoirs of melted matter at vast depths in the bowels of the earth,—so, at every era of the past, fossiliferous deposits and superficial igneous rocks were in progress contemporaneously with others of subterranean and plutonic origin, and some sedimentary strata were exposed to heat and made to assume a crystalline or metamorphic structure.

It can by no means be taken for granted, that during all these changes the solid crust of the earth has been increasing in thickness. It has been shown, that so far as aqueous action is concerned, the gain by fresh deposits, and the loss by denudation, must at each period have been equal (see above, p. 68.); and in like manner, in the inferior portion of the earth's crust, the acquisition of new crystalline rocks, at each successive era, may merely have counter-balanced the loss sustained by the melting of materials previously consolidated. As to the relative antiquity of the crystalline foundations of the earth's crust, when compared to the fossiliferous and volcanic rocks which they support, I have already stated, in the first chapter, that to pronounce an opinion on this matter is as difficult as at once to decide which of the two, whether the foundations or superstructure of an ancient city built on wooden piles, may be the oldest. We have seen that, to answer this question, we must first be prepared to say whether the work of decay and restoration had gone on most rapidly above or below, whether the average duration of the piles has exceeded that of the stone buildings, or the contrary. So also in regard to the relative age of the superior and inferior portions of the earth's crust; we cannot hazard even a conjecture on this point, until we know whether, upon an average, the power of water above, or that of heat below, is most efficacious in giving new forms to solid matter.

After the observations which have now been made, the reader will perceive that the term primary must either be entirely renounced, or, if retained, must be differently defined, and not made to designate a set of crystalline rocks, some of which are already ascertained to be newer than all the secondary formations. In this work I shall follow most nearly the method proposed by Mr. BouÉ, who has called all fossiliferous rocks older than the secondary by the name of primary. To prevent confusion, however, I shall always speak of these, when they are of the aqueous class, as the primary fossiliferous formations, because the word primary has hitherto been almost inseparably connected with the idea of a non-fossiliferous rock.

If we can prove any plutonic, volcanic, or metamorphic rocks to be older than the secondary formations, such rocks will also be primary, according to this system. Mr. BouÉ having with great propriety excluded the metamorphic rocks, as a class, from the primary formations, proposed to call them all "crystalline schists."

As there are secondary fossiliferous strata, so we shall find that there are plutonic, volcanic, and metamorphic rocks of contemporaneous origin, which I shall also term secondary.

In the next chapter it will be shown that the strata above the chalk have been called tertiary. If, therefore, we discover any volcanic, plutonic, or metamorphic rocks, which have originated since the deposition of the chalk, these also will rank as tertiary formations.It may perhaps be suggested that some metamorphic strata, and some granites, may be anterior in date to the oldest of the primary fossiliferous rocks. This opinion is doubtless true, and will be discussed in future chapters; but I may here observe, that when we arrange the four classes of rocks in four parallel columns in one table of chronology, it is by no means assumed that these columns are all of equal length; one may begin at an earlier period than the rest, and another may come down to a later point of time. In the small part of the globe hitherto examined, it is hardly to be expected that we should have discovered either the oldest or the newest members of each of the four classes of rocks. Thus, if there be primary, secondary, and tertiary rocks of the aqueous or fossiliferous class, and in like manner primary, secondary, and tertiary hypogene formations, we may not be yet acquainted with the most ancient of the primary fossiliferous beds, or with the newest of the hypogene.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page