Illusions played many roles in the science and art of deception during the World War, but they served most prominently in the later stages of the war upon the sea. Inasmuch as the story of the science of camouflage is not generally available, it appears worth while to present it briefly. Besides being of interest, it will reveal to the reader the part that the science of light, color, lighting, and vision played in deception. Furthermore, the reader will sense the numberless illusions which are woven into camouflage as developed in nature, and in human activities. The word camouflage by origin does not include all kinds of deception; however, by extension it may and will here signify almost the entire art and science of deception as found in nature and as practiced in the World War. Terrestrial Camouflage.—Camouflage is an art which is the natural outgrowth of our instinct for concealment and deception when pitting our wits against those of a crafty prey or enemy. It is an art older than the human race, for its beginnings may be traced back to the obscurity of the early ages of the evolution of animal life. The name was coined by the French to apply to a definite art which developed during the Great War to a high state, as many other arts developed by drawing deeply upon the resources of scientific Scientists have recognized for many years, and perhaps more or less vaguely for centuries, that Nature exhibits wonderful examples of concealment and deception. The survival of the fittest, as Darwin expressed his doctrine, included those individuals of a species who were best fitted by their markings and perhaps by peculiar habits to survive in the environment in which they lived. Naturally, markings, habits, and environment became more and more adapted to each other until the species became in equilibrium with Nature sufficiently to insure its perpetuity. If we look about us upon animal life we see on every hand examples of concealing coloration and attitudes designed to deceive the prey or enemy. The rabbit is mottled because Nature’s infinite variety of highlights, shadows, and hues demand variety in the markings of an animal if the latter is to be securely hidden. Solid color does not exist in Nature’s landscapes in large areas. The rabbit is lighter underneath to compensate for the lower intensity of illumination received on these portions. As winter approaches, animals in rigorous climates need warmer coats, and the hairs grow longer. In many cases the color of the hairs changes to gray or white, providing a better coating for the winter environment. There are many examples of “mobile” camouflage to be found in Nature. Seasonal changes have been cited in a foregoing paragraph. The chameleon changes its color from moment to moment. The flounder changes its color and pattern to suit its environment. It will even strive to imitate a black and white checkerboard. In looking at a bird, animal, insect, or other living thing it is necessary to place it in its natural environment at least in the imagination, before analyzing its coloration. For example, a male mallard duck hanging in the market is a very gaudy object, but place it in the pond among the weeds, the green leaves, the highlights, and the shadows, and it is surprisingly inconspicuous. The zebra in the zoo appears to be marked for the purpose of heralding its presence anywhere in the range of vision, but in its reedy, bushy, Thus studies of Nature reveal the importance of general hue, the necessity for broken color or pattern, the fact that black spots simulate shadows or voids, the compensation for lower illumination by counter-shading, and many other facts. The artist has aided in the development of camouflage, but the definite and working basis of all branches of camouflage are the laws and facts of light, color, and vision as the scientist knows them. Just as lower animal life has unconsciously survived or evolved by being fitted to do so, mankind has consciously, or at least instinctively, applied camouflage of various kinds to fool his prey or his enemy. Many of us in hunting ducks have concealed the bow of our sneak-boat with mud and weeds, or in the season of floating ice, with a white cloth. In our quest of water fowl we use decoys and grass suits. The Esquimau stalks his game behind a piece of ice. In fact, on every hand we find evidences of this natural instinct. The Indian painted his face and body in a variety of colors and patterns. Did he do this merely to be hideous? It seems very possible that the same instinct which made him the supreme master of wood-craft caused him to reap some of the advantages of concealment due to the painting of his face and body. In past wars there is plenty of evidence that concealment and deception were practiced to the full extent justifiable by the advantages or necessity. In the World War the advent of the airplane placed the Some time before the Great War began, it occurred to the writer that colored filters could be utilized in aiding vision by increasing the contrast of the object to be viewed against its surroundings.[9] Studies were made of various filters, made with the object of the experiment in mind, in viewing the uniforms of various armies. Further developments were made by applying the same principles to colored lights and painted pictures. Many of these have been Natural lighting is so variable that it is often impossible to provide camouflage which will remain satisfactory from day to day; therefore, a broad knowledge of Nature’s lighting is necessary in order to provide the best compromise. There are two sources of light in the daytime, namely, the sun and the sky. The relative amounts of light contributed by these two sources is continually changing. The sky on cloudless days contributes from one-tenth to one-third of the total light received by a horizontal surface at noon. Light from the sky and light reflected from the surroundings illuminate the shadows. These shadows are different in color than highlights, although these finer distinctions may be ignored in most camouflage because color becomes less conspicuous as the distance of observation increases. In general, the distribution of brightness or light and shade is the most important aspect to be considered. The camoufleur worries over shadows more than any other aspect generally. On overcast days camouflage is generally much more successful than on sunny days. Obviously, counter-shading is resorted to in Broken color or pattern is another fundamental of camouflage which, of course, must be adapted to its environment. For our trucks, cannon, and many other implements of war, dark green, yellow, dark blue, light gray, and other colors have been used in a jumble of large patterns. A final refinement is that of the blending of these colors at a distance, where the eye no longer resolves the individual patches, to a color which simulates the general hue of the surroundings. For example, red and green patches at a distance blend to yellow; yellow and blue patches blend to a neutral gray if suitably balanced, but if not, to a yellow-gray or a blue-gray; red, green, and blue if properly balanced will blend to a gray; black, white and green patches will blend to a green shade, and so on. These facts are simple to those who are In constructing such a pattern of various colors it is also desirable to have the final mean brightness approximate that of the general surroundings. This problem can be solved by means of the photometer and a formula provided, which states, for example, that a certain percentage of the total area be painted in gray, another percentage in green, and so on. The photometer has played an important rÔle in establishing the scientific basis of camouflage. The size of the pattern must be governed by the distance at which it is to be viewed, for obviously if too small the effect is that of solid color, and if too large it will render the object conspicuous, which is a disadvantage ranking next to recognizable. Where the artist is concerned with a background which does not include the sky, that is, where he deals only with illuminated objects on the earth, his trained eye is valuable provided the colors used meet the demands made by photographic plates and visual color-filters. In other words, the sky as a background gives trouble to all who are unfamiliar with scientific measurements. The brightnesses of sky and clouds are outside the scale of brightnesses One of the greatest annoyances to the camoufleur is the lack of dullness or “flatness” of the paints, fabrics, and some of the other media used. When viewed at some angles the glint of highlights due to specular reflection renders the work very conspicuous. For this reason natural foliage or such material as dyed raffia has been very successful. Systems of network and vertical screens have been extensively employed on roadways near the front, not for the purpose of concealing from the enemy the fact that the roadways exist, but to make it necessary to shell the entire roadway continually if it is hoped to prevent its use. Although the camoufleur is provided with a vast amount of material for his work, many of his requirements are met by the material at hand. Obviously, In this great game of hocus-pocus many deceptions are resorted to. Replicas of large guns and trenches are made; dummy soldiers are used to foil the sniper and to make him reveal his location, and papier-machÉ horses, trees, and other objects conceal snipers and observers and afford listening posts. Gunners have been dressed in summer in green flowing robes. In winter white robes have been utilized. How far away from modern warriors are all the usual glitter and glamour of military impedimenta in the past parades of peace time! The armies now dig in for concealment. The artillery is no longer invisible behind yonder hill, for the eyes of the aerial observer of the camera reveal its position unless camouflaged for the third dimension. In the foregoing only the highlights of a vast art have been viewed, but the art is still vaster, for it extends into other fields. Sound must sometimes be camouflaged and this can only be done by using the same medium—sound. In these days of scientific warfare it is to be expected that the positions of enemy guns would be detected by other means than The foregoing is a brief statement of some of the fundamental principles of land camouflage. Let us now briefly consider the eyes of the enemy. Of course, much concealment and deception is devised to foil the observer who is on the ground and fairly close. The procedure is obvious to the average imagination; however, the reader may not be acquainted with the aerial eyes from which concealment is very important. As one ascends in an airplane to view a landscape he is impressed with the inadequacy of the eyes to observe the vast number of details and of the mind to retain them. Field glasses cannot be used as satisfactorily in an airplane as on solid ground, owing to vibration and other movements. The difference is not as great in the huge flying boats as it is in the ordinary airplane. The camera can record many details with higher accuracy than the eye. At an altitude of one mile the lens can be used at full aperture and thus very short exposures are possible. This tends to avoid the difficulty due to vibration. When the plates are developed for detail and enlargements are made, many Marine Camouflage.—At the time of the Spanish-American war, our battleships were painted white, apparently with little thought of attaining low visibility. Later the so-called “battleship gray” was adopted, but it has been apparent to close observers that this gray is in general too dark. Apparently it is a mixture of black and white. The ships of the British navy were at one time painted black, but preceding the Great War their coats were of a warm dark gray. Germany adopted dark gray before the close of the last century and Austria adopted the German gray at the outbreak of the war. The French and Italian fleets were also painted a warm gray. This development toward gray was the result of an aim toward attaining low visibility. Other changes were necessitated by submarine warfare which will be discussed later. In the early days of unrestricted submarine warfare many schemes for modifying the appearance of vessels were submitted. Many of these were merely wild fancies with no established reasoning behind them. Here again science came to the rescue and through research and consultation, finally straightened out matters. The question of low visibility for vessels could be thoroughly studied on a laboratory scale, because the seascape and natural lighting conditions could be reproduced very closely. Even the general weather conditions could be simulated, although, of course, the experiments could be prosecuted outdoors with small models, as indeed they In order to study low visibility a scale of visibility must be established, and it is essential to begin with the fundamentals of vision. We distinguish objects by contrasts in brightness and in color and we recognize objects by these contrasts which mold their forms. In researches in vision it is customary to devise methods by which these contrasts can be varied. This is done by increasing or decreasing a veil of luminosity over the object and its surroundings and by other means. Much work has been done in past years in studying the minimum perceptible contrast, and it has been found to vary with hue, with the magnitude Owing to the curvature of the earth, the distance at which a vessel can be seen on a clear day is limited by the height of the observer and of the ship’s superstructure. For an observer in a certain position the visibility range varies as the square root of the distance of the object from him. Such data are easily available, so they will not be given here. So far we have considered the ship itself when, as a matter of fact, on clear days the smoke cloud emitted by the ship is usually visible long before a ship’s superstructure appears on the horizon. This led to the prevention of smoke by better combustion, by using smokeless fuels, etc. The irregular skyline of a ship is perhaps one of the most influential factors which tend to increase its visibility. Many suggestions pertaining to the modification of the superstructure have been made, but these are generally impracticable. False work suffers in heavy seas and high winds. After adopting a suitable gray as, a “low-visibility” paint for ships, perhaps the next refinement was counter shading; that is, shadows were painted Many optical illusions have been devised and studied by scientists. In fact, some of these tricks are well known to the general reader. Straight lines may appear broken, convergent, or divergent by providing certain patterns or lines intermingled with Fig. 92.—A primary stage in the evolution of the use of geometrical-optical illusions on ships. Such apparently grotesque patterns aimed to distort the lines of the ship and to warp the perspective After low-visibility was abandoned in favor of the optical illusion for frustrating the torpedo-attack by the submarine, there was a period during which merely a mottled pattern was used for vessels. Gradually this evolved toward such patterns as shown in Fig. 92. In this illustration it is seen that the optical-illusion idea has taken definite form. During the period of uncertainty as to the course the pattern should take, a regularity of pattern was tried, such as illustrated in Figs. 93 and 94. Finally, when it dawned more or less simultaneously upon various scientific men, who were studying the problems of protecting vessels upon the seas, that the geometrical-optical illusion in its well-known forms was directly adaptable, renewed impetus was given to investigation. The scientific literature yielded many facts but the problems were also studied directly by means of models. The latter study is illustrated by Figs. 95 and 96, the originals having been furnished by Mr. E. L. Warner,[11] who among others prosecuted a study of the application of illusions to vessels. The final results were gratifying, as shown to some extent in Figs. 97 and 98, also kindly furnished by Mr. Warner. It is seen that these patterns are really deceiving as to the course of the vessel. Figs. 93 and 94.—Attempts at distortion of outline which preceded the adoption of geometrical-optical illusions for ships. Figs. 95 and 96.—Illustrating the use of models by the Navy Department in developing the geometrical-illusion for ships. Before the war began, a Brazilian battleship launched in this country was provided with a system of blue lights for use when near the enemy at night. Blue was adopted doubtless for its low range compared with light of other colors. We know that the setting sun is red because the atmospheric dust, smoke, and moisture have scattered and absorbed the blue and green rays more than the red and yellow rays. In other words the penetrating power of the red and yellow is greater than that of the blue rays. This country made use of this expedient to some extent. Of course, all other lights were extinguished and portholes were closed in ocean travel during the submarine menace. Figs. 97 and 98.—Examples of the geometrical-optical illusion as finally applied. Naturally smoke-screens were adopted as a defensive measure on sea as well as on land. Destroyers belch dense smoke from their stacks in order to screen battleships. Many types of smoke-boxes have been devised or suggested. The smoke from these is produced chemically and the apparatus must be simple and safe. If a merchantman were attacked A submerged submarine may be invisible for two reasons: (1) It may be deep enough to be effectively veiled by the luminosity of the mass of water above it (including the surface brightness) or, (2) It may be of the proper brightness and color to simulate the brightness and color of the water. It is obvious that if it were white it would have to attain concealment by submerging deeply. If it were a fairly dark greenish-blue it would be invisible at very small depths. In fact, it would be of very low visibility just below the surface of the water. By the use of the writer’s data on hues and reflection-factors of earth and water areas it would be easy to camouflage submarines effectively from enemies overhead. The visibility of submarines is well exemplified by viewing large fish such as sharks from airships at low altitudes. They appear as miniature submarines dark gray or almost black amid greenish-blue surroundings. Incidentally, the color of water varies considerably from the dirty yellowish-green of shallow inland waters containing much suspended matter to the greenish-blue of deep clear ocean waters. The latter as viewed vertically are about one-half the brightness of the former under the same conditions and are decidedly bluer. The Visibility of Airplanes.—In the Great War the airplane made its dÉbut in warfare and in a short time made a wonderful record, yet when hostilities ceased aerial camouflage had not been put on a scientific basis. No nation had developed this general The visibility of airplanes presents some of the most interesting problems to be found in the development of the scientific basis for camouflage. The general problem may be subdivided according to the type of airplane, its field of operation, and its activity. For example, patrol craft which fly low over our own lines would primarily be camouflaged for low visibility as viewed by enemies above. (See Fig. 99.) High-flying craft would be rendered of low visibility as viewed primarily by the enemy below. Airplanes for night use present other problems and the visibility of seaplanes is a distinct problem, owing to the fact that the important background is the water, because seaplanes are not ordinarily high-flying craft. In all these considerations it will be noted that the activity of the airplanes is of primary importance, Fig. 99.—Representative earth backgrounds for an airplane (uncamouflaged) as viewed from above. The same fundamentals of light, color, and vision apply in this field as in other fields of camouflage, but different data are required. When viewing aircraft from above, the earth is the background of most importance. Cumulus clouds on sunny days are generally at altitudes of 4000 to 7000 feet. Clouds are not always present and besides they are of such a different order of brightness from that of the earth that they cannot be considered in camouflage designed On looking down upon the earth one is impressed with the definite types of areas such as cultivated fields, woods, barren ground and water. Different landscapes contain these areas in various proportions, which fact must be considered. Many thousand determinations of reflection-factor and of approximate hue were made for these types of areas, and upon the mean values camouflage for low visibility as viewed from above was developed. A few values are given in the accompanying table, but a more comprehensive presentation will be found elsewhere.[12]
(From thousands of measurements made by viewing vertically downward during summer and fall from various altitudes.)
Wooded areas are the darkest general areas in a landscape and possess a very low reflection-factor. From above one sees the deep shadows interspersed among the highlights. These shadows and the trapping Inland waters which contain much suspended matter are about as bright as grazing land and cultivated fields. Shallow water partakes somewhat of the color and brightness of the bed, and deep ocean water is somewhat darker than wooded areas. Quiet stagnant pools or small lakes are sometimes exceedingly dark; in fact, they appear like pools of ink, owing to the fact that their brightness as viewed vertically is almost entirely due to surface reflection. If it is due entirely to reflection at the surface, the brightness will be about 2 per cent of the brightness of the The earth patterns were extensively studied with the result that definite conclusions were formulated pertaining to the best patterns to be used. Although it is out of the question to present a detailed discussion of this important phase in this rÉsumÉ, attention will be called to the manner in which the earth patterns diminish with increasing altitude. The insert in Fig. 100 shows the actual size of an image of a 50-foot airplane from 0 to 16,000 feet below the observer as compared with corresponding images (to the same scale) of objects and areas on the earth’s surface 10,000 feet below the observer. For simplicity assume a camera lens to have a focal length equal to 10 inches, then the length x of the image of an object 100 feet long will be related to the altitude h in this manner:
By substituting the values of altitude h in the equation the values of the length x of the image are found. The following values illustrate the change in size of the image with altitude:
Fig. 100.—Illustrating the study of pattern for airplanes. The photograph was taken from an altitude of 10,000 feet. Before considering other aspects of camouflage it is well to consider such features as haze, clouds and sky. There appear to be two kinds of haze which the writer will arbitrarily call earth and high haze, respectively. The former consists chiefly of dust and smoke and usually extends to an altitude of about one mile, although it occasionally extends much higher. Its upper limit is very distinct, as seen by the “false” horizon. This horizon is used more by the pilot when flying at certain altitudes than the true horizon. At the top of this haze cumulus clouds are commonly seen to be poking out like nearly submerged icebergs. The upper haze appears somewhat whiter in color and appears to extend sometimes to altitudes of several or even many miles. The fact that the “earth” haze may be seen to end usually at about 5000 to 6000 feet and the upper haze to persist even beyond 20,000 feet has led the author to apply different names for convenience. The upper limit of the “earth” The sky generally decreases considerably in brightness as the observer ascends. The brightness of the sky is due to scattered light, that is, to light being reflected by particles of dust, smoke, thinly diffused clouds, etc. By making a series of measurements of the brightness of the zenith sky for various altitudes, the altitude where the earth haze ends is usually plainly distinguishable. Many observations of this character were accumulated. In some extreme cases the sky was found to be only one-tenth as bright when observed at high altitudes of 15,000 to 20,000 feet as seen from the earth’s surface. This accounts partly for the decrease in the visibility of an airplane as it ascends. At 20,000 feet the sky was found to contribute as little as 4 per cent of the total light on a horizontal plane and the extreme harshness of the lighting is very noticeable when the upper sky is cloudless and clear. Doubtless, it has been commonly noted that airplanes are generally very dark objects as viewed from below against the sky. Even when painted white they are usually much darker than the sky. As they ascend the sky above them becomes darker, although to the observer on the ground the sky remains constant in brightness. However, in ascending, the airplane is leaving below it more and more luminous haze which acts as a veil in aiding to screen it until, Inasmuch as there is not enough light reflected upward from the earth to illuminate the lower side of an opaque surface sufficiently to make it as bright as the sky ordinarily, excepting at very high altitudes for very clear skies, it is necessary, in order to attain low visibility for airplanes as viewed from below, to supply some additional illumination to the lower surfaces. Computations have shown that artificial lighting is impracticable, but measurements on undoped airplane fabrics indicate that on sunny days a sufficient brightness can be obtained from direct sunlight diffused by the fabric to increase the brightness to the order of magnitude of the brightness of the sky. On overcast days an airplane will nearly always appear very much darker than the sky. That is, the brightness of the lower sides can in no other manner be made equal to that of the sky. However, low visibility can be obtained on sunny days which is an advantage over high visibility at all times, as is the case with airplanes now in use. Many observations and computations of these and other factors have been made, so that it is possible to predict results. Transparent media have obvious advantages, but no satisfactory ones are available at present. In considering these aspects it is well to recall that the two sources of light are the sun and the sky. Assuming the sun to contribute 80 per cent of the total light which reaches the upper side of an opaque horizontal diffusing surface at midday at the earth and assuming the sky to be cloudless and uniform in brightness, then the brightness of the horizontal upper surface will equal 5 RB, where R is the reflection-factor of the surface and B is the brightness (different in the two cases) of the sky. On a uniformly overcast day the brightness of the surface would be equal Seasonable changes present no difficulties, for from a practical standpoint only summer and winter need be generally considered. If the earth is covered with snow an airplane covered completely with white or gray paint would be fairly satisfactory as viewed from above, and if a certain shade of a blue tint be applied to the lower surfaces, low visibility as viewed from below would result. The white paint would possess a reflection-factor about equal to that of snow, thus providing low visibility from above. Inasmuch as the reflection-factor of snow is very high, the white lower sides of an airplane would receive a great deal more light in winter than they would in summer. Obviously, a blue tint is necessary for low visibility against the sky, but color has not been primarily considered in the preceding paragraphs because the chief difficulty Seaplanes whose backgrounds generally consist of water would be painted of the color and brightness of water with perhaps a slight mottling. The color would generally be a very dark shade, approximating blue-green in hue. Aircraft for night use would be treated in the same manner as aircraft for day use, if the moonlight is to be considered a dominant factor. This is one of the cases where the judgment must be based on actual experience. It appears that the great enemy of night raiders is the searchlight. If this is true the obvious expedient is to paint the craft a dull jet black. Experiments indicate that it is more difficult to pick up a black craft than a gray or white one and also it is more difficult to hold it in the beam of the searchlight. This can be readily proved by the use of black, gray, and white cards in the beam of an automobile head-light. The white card can be seen in the outskirts of the beam where the gray or black cannot be seen, and the gray can be picked up where the black one is invisible. The science of vision accounts for this as it does for many other questions which arise in the consideration of camouflage or low visibility. Some attempts have been made to apply the principle of confusibility to airplanes as finally developed for vessels to circumvent the submarine, but the The camouflage of observation balloons has not been developed, though experiments were being considered in this direction as the war closed. Inasmuch as they are low-altitude crafts it appears that they would be best camouflaged for the earth as a background. Their enemies pounce down upon them from the sky so that low visibility from above seems to be the better choice. In the foregoing it has been aimed to give the reader the general underlying principles of camouflage and low visibility, but at best this is only a rÉsumÉ. In the following references will be found more extensive discussions of various phases of the subject. REFERENCES 1. A Study of ZÖllner’s Figures and Other Related Figures, J. Jastrow, Amer. Jour. of Psych. 1891, 4, p. 381. 2. A Study of Geometrical Illusions, C. H. Judd, Psych. Rev. 1899, 6, p. 241. 3. Visual Illusions of Depth, H. A. Carr, Psych. Rev. 1909, 16, p. 219. 4. Irradiation of Light, F. P. Boswell, Psych. Bul. 1905, 2, p. 200. 5. Retiring and Advancing Colors, M. Luckiesh, Amer. Jour. Psych. 1918, 29, p. 182. 6. The Language of Color, 1918, M. Luckiesh. 7. Apparent Form of the Dome of the Sky, Ann. d. Physik, 1918, 55, p. 387; Sci. Abs. 1918, No. 1147. 8. Course on Optics, 1738, Robert Smith. 9. Color and Its Applications, 1915 and 1921; Light and Shade and Their Applications, 1916, M. Luckiesh. 10. Report of The Submarine Defense Association, L. T. Bates and L. A. Jones. 11. Marine Camouflage Design, E. L. Warner, Trans. I. E. S. 1919, 14, p. 215. 12. The Visibility of Airplanes, M. Luckiesh, Jour. Frank. Inst. March and April, 1919; also Aerial Photometry, Astrophys. Jour. 1919, 49, p. 108. 13. Jour. Amer. Opt. Soc., E. Karrer, 1921. The foregoing are only a few references indicated in the text. Hundreds of references are available and obviously it is impracticable to include such a list. The most fruitful sources of references are the general works on psychology. E. B. Titchener’s Experimental Psychology (vol. 1) contains an excellent list. A chapter on Space in William James’ Principles of Psychology (vol. II) will be found of interest to those who wish to delve deeper into visual perception. Other general references are Elements of Physiological Psychology by Ladd and Woodworth; the works of Helmholtz; a contribution by Hering in Hermann’s Handb. d. Phys. Bk. III, part 1; Physiological Psychology by Wundt; E. B. Delabarre, Amer. Jour. Psych. 1898, 9, p. 573; W. Wundt, TÄuschungen, p. 157 and Philos. Stud. 1898, 14, p. 1; T. Lipps, Raumaesthetik and Zeit. f. Psych. 1896, 12, 39. |