III VISION

Previous

A description of the eye by no means suffices to clarify the visual process. Even the descriptions of various phenomena in the preceding chapter accomplish little more than to acquaint the reader with the operation of a mechanism, although they suggest the trend of the explanations of many illusions. At best only monocular vision has been treated, and it does not exist normally for human beings. A person capable only of monocular vision would be like Cyclops Polyphemus. We might have two eyes, or even, like Argus, possess a hundred eyes and still not experience the wonderful advantages of binocular vision, for each eye might see independently. The phenomena of binocular vision are far less physical than those of monocular vision. They are much more obscure, illusory, and perplexing because they are more complexly interwoven with or allied to psychological phenomena.

The sense of sight differs considerably from the other senses. The sense of touch requires solid contact (usually); taste involves liquid contact; smell, gaseous contact; and hearing depends upon a relay of vibrations from an object through another medium (usually air), resulting finally in contact. However, we perceive things at a distance through vibration (electromagnetic waves called light) conveyed by a subtle, intangible, universal medium which is unrecognizable excepting as a hypothetically necessary bearer of light-waves or, more generally, radiant energy.

It also is interesting to compare the subjectiveness and objectiveness of sensations. The sensation of taste is subjective; it is in us, not in the body tasted. In smell we perceive the sensation in the nose and by experience refer it to an object at a distance. The sensation of hearing is objective; that is, we refer the cause to an object so completely that there is practically no consciousness of sensation in the ear. In sight the impression is so completely projected outward into space and there is so little consciousness of any occurrence in the eye that it is extremely difficult to convince ourselves that it is essentially a subjective sensation. The foregoing order represents the sense-organs in increasing specialization and refinement. In the two higher senses—sight and hearing—there is no direct contact with the object and an intricate mechanism is placed in front of the specialized nerve to define and to intensify the impression. In the case of vision this highly developed instrument makes it possible to see not only light but objects.

As we go up the scale of vertebrate animals we find that there is a gradual change of the position of the eyes from the sides to the front of the head and a change of the inclination of the optical axes of the two eyes from 180 degrees to parallel. There is also evident a gradual increase in the fineness of the bacillary layer of the retina from the margins toward the center, and, therefore, an increasing accuracy in the perception of form. This finally results in a highly organized central spot or fovea which is possessed only by man and the higher monkeys. Proceeding up the scale we also find an increasing ability to converge the optic axes on a near point so that the images of the point may coincide with the central spots of both retinas. These changes and others are closely associated with each other and especially with the development of the higher faculties of the mind.

Binocular vision in man and in the higher animals is the last result of the gradual improvement of the most refined sense-organ, adapting it to meet the requirements of highly complex organisms. It cannot exist in some animals, such as birds and fishes, because they cannot converge their two optical axes upon a near point. When a chicken wishes to look intently at an object it turns its head and looks with one eye. Such an animal sees with two eyes independently and possibly moves them independently. The normal position of the axes of human eyes is convergent or parallel but it is possible to diverge the axes. In fact, with practice it is possible to diverge the axes sufficiently to look at a point near the back of the head, although, of course, we do not see the point.

The movement of the eyes is rather complex. When they move together to one side or the other or up and down in a vertical plane there is no rotation of the optical axes; that is, no torsion. When the visual plane is elevated and the eyes move to the right they rotate to the right; when they move to the left they rotate to the left. When the visual plane is depressed and the eyes move to the right they rotate to the left; when they move to the left they rotate to the right. Through experience we unconsciously evaluate the muscular stresses, efforts, and movements accompanying the motion of the eyes and thereby interpret much through visual perception in regard to such aspects of the external world as size, shape, and distance of objects. Even this brief glimpse of the principal movements of the eyes indicates a complexity which suggests the intricacy of the explanations of certain visual phenomena.

At this point it appears advantageous to set down the principal modes by which we perceive the third dimension of space and of objects and other aspects of the external world. They are as follows: (1) extent; (2) clearness of brightness and color as affected by distance; (3) interference of near objects with those more distant; (4) elevation of objects; (5) variation of light and shade on objects; (6) cast shadows; (7) perspective; (8) variation of the visor angle in proportion to distance; (9) muscular effort attending accommodation of the eye; (10) stereoscopic vision; (11) muscular effort attending convergence of the axes of the eyes. It will be recognized that only the last two are necessarily concerned with binocular vision. These varieties of experiences may be combined in almost an infinite variety of proportions.

Wundt in his attempt to explain visual perception considered chiefly three factors: (1) the retinal image of the eye at rest; (2) the influence of the movements of one eye; and, (3) the additional data furnished by the two eyes functioning together. There are three fields of vision corresponding to the foregoing. These are the retinal field of vision, the monocular field, and the binocular field. The retinal field of vision is that of an eye at rest as compared with the monocular field, which is all that can be seen with one eye in its entire range of movement and therefore of experience. The retinal field has no clearly defined boundaries because it finally fades at its indefinite periphery into a region where sensation ceases.

It might be tiresome to follow detailed analyses of the many modes by which visual perception is attained, so only a few generalizations will be presented. For every voluntary act of sight there are two adjustments of the eyes, namely, focal and axial. In the former case the ciliary muscle adjusts the lens in order to produce a defined image upon the retina. In axial adjustments the two eyes are turned by certain muscles so that their axes meet on the object looked at and the images of the object fall on the central-spots of the retina. These take place together without distinct volition for each but by the single voluntary act of looking. Through experience the intellect has acquired a wonderful capacity to interpret such factors as size, form, and distance in terms of the muscular movements in general without the observer being conscious of such interpretations.

Binocular vision is easily recognized by holding a finger before the eyes and looking at a point beyond it. The result is two apparently transparent fingers. An object is seen single when the two retinal images fall on corresponding points. Direction is a primary datum of sense. The property of corresponding points of the two retinas (binocular vision) and consequently of identical spatial points in the two visual fields is not so simple. It is still a question whether corresponding points (that is, the existence of a corresponding point in one retina for each point in the other retina) are innate, instinctive, and are antecedent of experience or are “paired” as the result of experience. The one view results in the nativistic, the other in the empiristic theory. Inasmuch as some scientists are arrayed on one side and some on the other, it appears futile to dwell further upon this aspect. It must suffice to state that binocular vision, which consists of two retinas and consequently two fields of view absolutely coÖrdinated in some manner in the brain, yields extensive information concerning space and its contents.

After noting after-images, motes floating in the field of view (caused by defects in the eye-media) and various other things, it is evident that what we call the field of view is the external projection into space of retinal states. All the variations of the latter, such as images and shadows which are produced in the external field of one eye, are faithfully reproduced in the external field of the other eye. This sense of an external visual field is ineradicable. Even when the eyes are closed the external field is still there; the imagination or intellect projects it outward. Objects at different distances cannot be seen distinctly at the same time but by interpreting the eye-movements as the point of sight is run backward and forward (varying convergence of the axes) the intellect practically automatically appraises the size, form, and distance of each object. Obviously, experience is a prominent factor. The perception of the third dimension, depth or relative distance, whether in a single object or a group of objects, is the result of the successive combination of the different parts of two dissimilar images of the object or group.

As already stated, the perception of distance, size, and form is based partly upon monocular and partly upon binocular vision, and the simple elements upon which judgments of these are based are light, shade, color, intensity, and direction. Although the interpretation of muscular adjustments plays a prominent part in the formation of judgments, the influences of mathematical perspective, light, shade, color, and intensity are more direct. Judgments based upon focal adjustment (monocular) are fairly accurate at distances from five inches to several yards. Those founded upon axial adjustment (convergence of the two axes in binocular vision) are less in error than the preceding ones. They are reliable to a distance of about 1000 feet. Judgments involving mathematical perspective are of relatively great accuracy without limits. Those arrived at by interpreting aerial perspective (haziness of atmosphere, reduction in color due to atmospheric absorption, etc.) are merely estimates liable to large errors, the accuracy depending largely upon experience with local conditions.

The measuring power of the eye is more liable to error when the distances or the objects compared lie in different directions. A special case is the comparison of a vertical distance with a horizontal one. It is not uncommon to estimate a vertical distance as much as 25 per cent greater than an actually equal horizontal distance. In general, estimates of direction and distance are comparatively inaccurate when only one eye is used although a one-eyed person acquires unusual ability through a keener experience whetted by necessity. A vertical line drawn perpendicular to a horizontal one is likely to appear bent when viewed with one eye. Its apparent inclination is variable but has been found to vary from one to three degrees. Monocular vision is likely to cause straight lines to appear crooked, although the “crookedness” may seem to be more or less unstable.

The error in the estimate of size is in reality an error in the estimation of distance except in those cases where the estimate is based directly upon a comparison with an object of supposedly known size. An amusing incident is told of an old negro who was hunting for squirrels. He shot several times at what he supposed to be a squirrel upon a tree-trunk and his failure to make a kill was beginning to weaken his rather ample opinion of his skill as a marksman. A complete shattering of his faith in his skill was only escaped by the discovery that the “squirrel” was a louse upon his eyebrow. Similarly, a gnat in the air might appear to be an airplane under certain favorable circumstances. It is interesting to note that the estimated size of the disk of the sun or moon varies from the size of a saucer to that of the end of a barrel, although a pine tree at the horizon-line may be estimated as 25 feet across despite the fact that it may be entirely included in the disk of the sun setting behind it.

Double images play an important part in the comparison of distances of objects. The “doubling” of objects is only equal to the interocular distance. Suppose two horizontal wires or clotheslines about fifty feet away and one a few feet beyond the other. On looking at these no double images are visible and it is difficult or even impossible to see which is the nearer when the points of attachment of the ends are screened from view. However, if the head is turned to one side and downward (90 degrees) so that the interocular line is now at right angles (vertical) to the horizontal lines, the relative distances of the latter are brought out distinctly. Double images become visible in the latter case.

According to BrÜcke’s theory the eyes are continuously in motion and the observer by alternately increasing or decreasing the convergence of the axes of the eyes, combines successively the different parts of the two scenes as seen by the two eyes and by running the point of sight back and forth by trial obtains a distinct perception of binocular perspective or relief or depth of space. It may be assumed that experience has made the observer proficient in this appraisal which he arrives at almost unconsciously, although it may be just as easy to accept Wheatstone’s explanation. In fact, some experiences with the stereoscope appear to support the latter theory.

Wheatstone discovered that the dissimilar pictures of an object or scene, when united by means of optical systems, produce a visual effect similar to that produced by the actual solid object or scene provided the dissimilarity is the same as that between two retinal images of the solid object or scene. This is the principle upon which the familiar stereoscope is founded. Wheatstone formulated a theory which may be briefly stated as follows: In viewing a solid object or a scene two slightly dissimilar retinal images are formed in the two eyes respectively, but the mind completely fuses them into one “mental” image. When this mental fusion of the two really dissimilar retinal images is complete in this way, it is obvious that there cannot exist a mathematical coincidence. The result is a perception of depth of space, of solidity, of relief. In fact the third dimension is perceived. A stereoscope accomplishes this in essentially the same manner, for two pictures, taken from two different positions respectively corresponding to the positions of the eyes, are combined by means of optical systems into one image.

Lack of correct size and position of the individual elements of stereoscopic pictures are easily detected on combining them. That is, their dissimilarity must exactly correspond to that between two views of an object or scene from the positions of the two eyes respectively (Fig. 2). This fact has been made use of in detecting counterfeit notes. If two notes made from the same plate are viewed in a stereoscope and the identical figures are combined, the combination is perfect and the plane of the combined images is perfectly flat. If the notes are not made from the same plate but one of them is counterfeit, slight variations in the latter are unavoidable. Such variations will show themselves in a wavy surface.

The unwillingness of the visual sense to combine the two retinal images, if they are dissimilar to the extent of belonging to two different objects, is emphasized by means of colors. For example, if a green glass is placed over one eye and a red glass over the other, the colors are not mixed by the visual sense. The addition of these two colors results normally in yellow, with little or no suggestion of the components—red and green. But in the foregoing case the visual field does not appear of a uniform yellow. It appears alternately red and green, as though the colors were rivaling each other for complete mastery. In fact, this phenomenon has been termed “retinal rivalry.”

The lenses of the stereoscope supplement eye-lenses and project on the retina two perfect images of a near object, although the eyes are looking at a distant object and are therefore not accommodated for the near one (the photographs). The lenses enlarge the images similar to the action of a perspective glass. This completes the illusion of an object or of a scene. There is a remarkable distinctness of the perception of depth of space and therefore a wonderful resemblance to the actual object or scene. It is interesting to note the effect of taking the two original photographs from distances separated by several feet. The effect is apparently to magnify depth. It is noteworthy that two pictures taken from an airplane at points fifty feet or so apart, when combined in the stereoscope, so magnify the depth that certain enemy-works can be more advantageously detected than from ordinary photographs.

Stereoscopic images such as represented in Fig. 2 may be combined without the aid of the stereoscope if the optical axes of the eye can be sufficiently converged or diverged. Such images or pictures are usually upon a card and are intended to be combined beyond the plane of the card, for it is in this position that the object or scene can be perceived in natural perspective, of natural size, of natural form, and at natural distance. But in combining them the eyes are looking at a distant object and the axes are parallel or nearly so. Therefore, the eyes are focally adjusted for a distant object but the light comes from a very near object—the pictures on the card. Myopic eyes do not experience this difficulty and it appears that normal vision may be trained to overcome it. Normal eyes are aided by using slightly convex lenses. Such glasses supplement the lenses of the eye, making possible a clear vision of a near object while the eyes are really looking far away or, in other words, making possible a clear image of a near object upon the retina of the unadjusted eye. Stereoscopic pictures are usually so mounted that “identical points” on the two pictures are farther apart than the interocular distance and therefore the two images cannot be combined when the optical axes of the eyes are parallel or nearly so, which is the condition when looking at a distant object. In such a case the two pictures must be brought closer together.

Fig. 2.—Stereoscopic pictures for combining by converging or diverging the optical axes.

Fig. 3.—Stereoscopic pictures.

In Figs. 2 and 3 are found “dissimilar” drawings of the correct dissimilarity of stereoscopic pictures. It is interesting and instructive to practice combining these with the unaided eyes. If Fig. 2 is held at an arm’s length and the eyes are focused upon a point several inches distant, the axes will be sufficiently converged so that the two images are superposed. It may help to focus the eyes upon the tip of a finger until the stereoscopic images are combined. In this case of converging axes the final combined result will be the appearance of a hollow tube or of a shell of a truncated cone, apparently possessing the third dimension and being perceived as apparently smaller than the actual pictures in the background at arm’s length. If the two stereoscopic pictures are combined by looking at a point far beyond the actual position of Fig. 2, the combined effect is a solid truncated cone but perceived as of about the same size and at about the same distance from the eye as the actual diagrams. In the latter case the smaller end of the apparent solid appears to be nearer than the larger end, but in the former case the reverse is true, that is, the smaller end appears to be at a greater distance. The same experiments may be performed for Fig. 3 with similar results excepting that this appears to be a shell under the same circumstances that Fig. 2 appears to be a solid and vice versa. A few patient trials should be rewarded by success, and if so the reader can gain much more understanding from the actual experiences than from description.

The foregoing discussion of vision should indicate the complexity of the visual and mental activities involved in the discrimination, association, and interpretation of the data obtained through the eye. The psychology of visual perception is still a much controverted domain but it is believed that the glimpses of the process of vision which have been afforded are sufficient to enable the reader to understand many illusions and at least to appreciate more fully those whose explanations remain in doubt. Certainly these glimpses and a knowledge of the information which visual perception actually supplies to us at any moment should convince us that the visual sense has acquired an incomparable facility for interpreting the objective world for us. Clearness of vision is confined to a small area about the point of sight, and it rapidly diminishes away from this point, images becoming dim and double. We sweep this point of sight backward and forward and over an extensive field of view, gathering all the distinct impressions into one mental image. In doing this the unconscious interpretation of the muscular activity attending accommodation and convergence of the eyes aids in giving to this mental picture the appearance of depth by establishing relative distances of various objects. Certainly the acquired facility is remarkable.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page