FOSSILS, AND HOW THEY ARE FORMED "How of a thousand snakes each one Fossils are the remains, or even the indications, of animals and plants that have, through natural agencies, been buried in the earth and preserved for long periods of time. This may seem a rather meagre definition, but it is a difficult matter to frame one that will be at once brief, exact, and comprehensive; fossils are not necessarily the remains of extinct animals or plants, neither are they, of necessity, objects that have become petrified or turned into stone. Bones of the Great Auk and Rytina, which are quite extinct, would hardly be considered as fossils; while the bones of many species of animals, still living, would properly come in that category, having long ago been buried by natural causes and often been changed into Many fossils indeed merit their popular appellation of petrifactions, because they have been changed into stone by the slow removal of the animal or vegetable matter present and its replacement by some mineral, usually silica or some form of lime. But it is necessary to include 'indications of plants or animals' in the above definition because some of the best fossils may be merely impressions of plants or animals and no portion of the objects themselves, and yet, as we shall see, some of our most important information has been gathered from these same imprints. Nearly all our knowledge of the plants that flourished in the past is based on the impressions Many a crustacean, too, is known solely or mostly by the cast of its shell, the hard parts having completely vanished, and the existence of birds in some formations is revealed merely by the casts of their eggs; and these natural casts must be included in the category of fossils. Impressions of vertebrates may, indeed, be almost as good as actual skeletons, as in the case of some fishes, where the fine mud in which they were buried has become changed to a rock, rivalling porcelain in texture; the bones have either dissolved away or shattered into dust at the splitting of the rock, but the The reader may possibly wonder why it is that fossils are not more abundant; why, of the vast majority of animals that have dwelt upon the earth since it became fit for the habitation of living beings, not a trace remains. This, too, when some objects—the tusks of the Mammoth, for example—have been sufficiently well preserved to form staple articles of commerce at the present time, so that the carved handle of my lady's parasol may have formed part of some animal that flourished at the very dawn Fig. 1.—Diplomystus, an Ancient Member of the Shad Family. From the Fishbed at Green River, Wyoming. From a specimen in the United States National Museum. If an animal dies on dry land, where its bones lie exposed to the summer's sun and rain and the winter's frost and snow, it does not take these destructive agencies long to reduce the bones to powder; in the rare event of a climate devoid of rain, mere changes of temperature, by producing expansion and contraction, will sooner or later cause a bone to crack and crumble. Usually, too, the work of the elements is aided by that of animals and plants. Every one has seen a dog make way with a pretty good-sized bone, and the Hyena has still greater capabilities in that line; and ever since vertebrate Thus on dry land there is small opportunity for a bone to become a fossil; but, if a creature so perishes that its body is swept into the Suppose, however, that some animal has sunk in the depths of a quiet lake, where the wash of the waves upon the shore wears the sand or rock into mud so fine that it floats out into still water and settles there as gently as dew upon the grass. Little by little the bones are covered by a deposit that fills every groove and pore, preserving the mark of every ridge and furrow; and while this may take long, it is merely a matter of time and favorable circumstance to bury the bones as deeply as one might wish. Scarce a reader of these lines but at some time has cast anchor in some quiet If such an event as we have been supposing took place in a part of the globe where the land was gradually sinking—and the crust of the earth is ever rising and falling—the mud In the case of fossil wood greater changes have taken place than in the fossilization of bone, for there is not merely an infiltration of the specimen but a complete replacement of the original vegetable by mineral matter, the interior of the cells being first filled with silica and their walls replaced later on. So completely The process of fossilization is at best a slow one, and soft substances such as flesh, or even horn, decay too rapidly for it to take place, so that all accounts of petrified bodies, human or otherwise, are either based on deliberate frauds or are the result of a very erroneous misinterpretation of facts. That the impression or cast of a body might be formed in nature, somewhat as casts have been made of those who perished at Pompeii, is true; but, so far, no authentic case of the kind has come to light, and the reader is quite justified in disbelieving any report of "a petrified man." Natural casts of such hard bodies as shells are common, formed by the dissolving away of the original shell after it had become enclosed in mud, or even after this had changed to stone, and the filling up of this space by the Sometimes it happens that shells or other small objects imbedded in limestone have been dissolved and replaced by silica, and in such cases it is possible to eat away the enveloping rock with acid and leave the silicified casts. By this method specimens of shells, corals, and bryozoans are obtained of almost lace-like delicacy, and as perfect as if only yesterday gathered at the sea-shore. Casts of the interior of shells, showing many details of structure, are common, and anyone who has seen clams dug will understand how they are formed by the entrance of mud into the empty shell. Casts of the kernels of nuts are formed in much the same way, and Professor E. H. Barbour has thus described the probable manner in which this was done. When the nuts were dropped into the water of the ancient lake the kernel rotted away, but the shell, being tough "Fossil leaves" are nothing but fine casts, made in natural moulds, and all have seen the first stages in their formation as they Impressions of leaves are among the early examples of color-printing, for they are frequently of a darker, or even different, tint from that of the surrounding rock, this being caused by the carbonization of vegetable matter or to its action on iron that may have been present in the soil or water. Besides complete mineralization, or petrifaction, there are numerous cases of incomplete or semi-fossilization, where modern objects, still retaining their phosphate of lime and some animal matter even, are found buried in rock. This takes place when water containing carbonate of lime, silica, or sometimes iron, flows over beds of sand, cementing the grains into solid but not dense rock, and at the same time penetrating and uniting with it such things as chance to be buried. In this way was formed the "fossil man" of Guadeloupe, West Indies, a skeleton of a modern Carib lying in recent concretionary Sometimes we hear of springs or waters that "turn things into stone," but these tales are quite incorrect. Waters there are, like the celebrated hot springs of Auvergne, France, containing so much carbonate of lime in solution that it is readily deposited on objects placed therein, coating them more or less thickly, according to the length of time they are allowed to remain. This, however, is merely an encrustation, not extending into the objects. In a similar way the precipitation of solid material from waters of this description forms the porous rock known as tufa, and this often encloses moss, twigs, and other substances that are in no way to be classed with fossils. But some streams, flowing over limestone rocks, take up considerable carbonate of lime, and this may be deposited in water-soaked logs, The very rocks themselves may consist largely of fossils; chalk, for example, is mainly made up of the disintegrated shells of simple marine animals called foraminifers, and the beautiful flint-like "skeletons" of other small creatures termed radiolarians, minute as they are, have contributed extensively to the formation of some strata. Even after an object has become fossilized, it is far from certain that it will remain in good condition until found, while the chance of its being found at all is exceedingly small. When we remember that it is only here and there that nature has made the contents of the rocks accessible by turning the strata on edge, heaving them into cliffs or furrowing them with valleys and canyons, we realize what a vast number of pages of the fossil record must remain not only unread, but unseen. The wonder is, not that we know so little of the history of the past, but that we have learned so much, for not only is nature careless REFERENCESA very valuable and interesting article by Dr. Charles A. White, entitled "The Relation of Biology to Geological Investigation," will be found in the Report of the United States National Museum for 1892. This comprises a series of essays on the nature and scientific uses of fossil remains, their origin, relative chronological value and other questions pertaining to them. The United States National Museum has published a pamphlet, part K, Bulletin 39, containing directions for collecting and preparing fossils, by Charles Schuchert; and another, part B, Bulletin 39, collecting recent and fossil plants, by F. H. Knowlton. Fig. 3.—Skeleton of a Radiolarian Very Greatly Enlarged. |