EVERYTHING around us on this Earth we see is subject to one inevitable cycle of birth, growth, decay. Nothing that begins but comes at last to end. Not less is this true of the Earth as a whole and of each of its sister planets. Though our own lives are too brief even to mark the slow nearing to that eventual goal, the past history of the Earth written in its rocks and the present aspects of the several planets that circle similarly round the Sun alike assure us of the course of aging as certainly as if time, with all it brings about, passed in one long procession before our very eyes. Death is a distressing thing to contemplate under any circumstances, and not less so to a philosopher when that of a whole world is concerned. To think that this fair globe with all it has brought forth must lapse in time to nothingness; that the generations of men shall cease to be, their very records obliterated, is something to strike a chill into the heart of the most callous and numb endeavor at its core. That Æons must roll away before that final day is to the mind of the far-seeing no consolation for the end. Not only that we shall pass, but But vain regret avails not to change the universe’s course. What is concerns us and what will be too. From facing it we cannot turn away. We may alleviate its poignancy by the thought that our interest is after all remote, affecting chiefly descendants we shall never know, and commend to ourselves the altruistic example so nobly set us by doctors of medicine who, on the demise of others at which—and possibly to which—they have themselves assisted, show a fortitude not easily surpassed, a fortitude extending even to their bills. If they can act thus unshaken at sight of their contemporaries, we should not fall behind them in heroism toward posterity. Having in our last chapter run the gantlet of the geologists, we are in some sort fortified to face death—in a world—in this. The more so that we have some millenniums of respite before the execution of the decree. By the death of a planet we may designate that stage when all change on its surface, save disintegration, ceases. For then all we know as life in its manifold manifestations is at an end. To this it may come by many paths. For a planet, like a man, is exposed to death from a variety of untoward events. Of these the one least likely to occur is death by accident. This, Such an accident, a collision actual or virtual with another sun, would probably occur with some dark star; of which we sketched the ultimate results in our first chapter. The immediate ones would be of a most disastrous kind. For prefatory to the new birth would be the dissolution to make such resurrection possible. Destruction might come direct, or indirectly through the Sun. For though the Sun would be the tramp’s objective point, we might inadvertently find ourselves in the way. The choice would be purely academic; between being powdered, or deorbited and burnt up. So remote is this contingency that it need cause us no immediate alarm, as I carefully pointed out. But so strong is the instinct of This is the first way in which our world may come by its death. It is possible, but unlikely. For our Earth, long before that, is morally certain to perish otherwise. The second mode is one, incident to the very constitution of our solar system. It follows as a direct outcome of that system’s mechanical evolution, and may be properly designated, therefore, as due to natural causes. It might be diagnosed as death by paralysis. For such it resembles in human beings, palsy of individual movement afflicting a planet instead of a man. Tidal friction is the slow undermining cause; a force which is constantly at work in the action of every body in the universe upon every other. As we previously explained, the pull of one mass upon another is inevitably differential. Not only is the second drawn in its entirety toward the first, falling literally as it circles round, but the nearer parts are drawn more than the centre and the centre more than those farthest away. We may liken the result to a stretched rotating rubber ball, with, however, one important difference,—that each layer is more or less free to shear over the others. The bulge, Two concomitant symptoms follow the friction of the tidal ansÆ: a shift of the plane in which the rotation takes place, and a loss of speed in the spin itself. The first tends to bring the plane of rotation down to the orbital plane, with rotation and revolution in the same sense. This effect takes place quicker than the other, and in consequence different stages may be noted in the creeping paralysis by which the body is finally overcome. Loss of seasons characterizes the first. For the coincidence of the two planes means invariability in the Sun’s In large planets this outgrowing of seasons occurs before they have any, while the planet is yet cloud-wrapped. Such planets know nothing of some attributes of youth, like those unfortunate men who never were boys; just as reversely the meteorites are boys that never grew up. For if the planet be large, the action of the tidal forces is proportionately more powerful; while on the other hand the self-aging of the planet is greatly prolonged, and thus it may come about that the former process outstrips the latter to the missing of seasons entirely. This is sure to be the case with Jupiter, as the equator has already got down to within 3° of the orbit, and threatens to be the case with Saturn. These bodies, then, when they shall have put off their swaddling clothes of cloud, will wake to climates without seasons; globes where conditions are always the same on the same belts of latitude, and on which these alter progressively from equator to pole. Variety other than diurnal is thus excluded from their surfaces and from their skies. For the Sun and stars will rise always the same, The next stage of deprivation is the parting with the day. Although the day disappears, the result is too much day or too little, depending on where you choose to consider yourself upon the afflicted orb. For tidal friction proceeds to lengthen the twenty-four or other hours first to weeks, then months, then years, and at last to infinity; thus bringing the sun to a stock-still on the meridian, to flood one side of the world with perpetual day and plunge the other in eternal night. Which of these two hemispheres would be the worse abode, is matter of personal predilection; dust or glacier, deserts both. Everlasting unshielded noon would cause a wind circulation from all points of the enlightened periphery to the centre, whence a funnel-shaped current would rise to overflow back into the antipodes, thence to return by the horizon again. As the night side would be several hundred degrees at least colder than the noon one, all the moisture would be evaporated on the sunlit hemisphere, to be carried round and deposited as ice on the other, there to stay. Life would be either toasted or frappÉ. A Sahara backed by polar regions would be the obverse and the reverse of the shield. October 15, 1896. February 12, 1897. March 26, 1897. Venus—Drawings by Dr. Lowell showing agreement at different distances. The reader may deem the picture a fancy sketch which possibly may not appeal to him. Nevertheless, it not only is possible, but one which has overtaken our nearest of neighbors. To this pass the Mater Amorum, Venus herself, has already been brought. She betrays it by the wrinkles which modern observation has revealed upon her face. Innocent critics, with a gallantry one would hardly have credited them,—which shows how one may wrong even the humblest of creatures,—have denied the existence of these marks of age, on the chivalrous a priori assumption that it could not possibly be true because never seen before. Their negation, in naÏve ignorance of the facts, partakes the logic of the gallant captain, who, when asked by a lady to guess her Mercury has been brought to a like pass. This was evident even before the facts came out about Venus, for Venus, true to her instincts, shields herself with a veil of air which largely baffles man’s too curious gaze. Mercury, on the other hand, offers no objection to observation. When looked for at the proper time, his markings are quite distinct, dark, broken lines suggesting cracks. Schiaparelli, again, was the first to perceive the true state of the case, and his observations were independently confirmed and extended at Flagstaff in 1896. In so doing the latter disclosed a very interesting fact. It was evident that the markings held in general a definite fixed position upon the illuminated part of the disk, showing that the planet kept the same face always to the Sun. But systematic observation, continued day Diagram of libration in longitude Mercury. Effect of Libration The outward sign of this shows in the movement of the markings. To observers in space like ourselves, the planet seems to sway his head as he travels along his orbit. For weeks he turns his face, as shown by the markings on it, more and more over to the left; then turns it back again as far over to the right. It is as if he were looking furtively around as he hastens over his planetary path. Venus, of course, is equally subject to this law of distraction, but owing to the almost perfect circularity of her orbit she is less visibly affected. In fact, it is not possible to detect her lapse from a fixed regard to the Sun. At most it is no more than a glance out of the corner of her eyes—her slight deviation from perfect rectitude of Mercury and Venus are the only planets as yet that turn a constant face to their overruling lord. The reason for this appears when one goes into the matter analytically. The tidal force is not the direct pull of the Sun on a particle of the body, but the difference in the pulls upon a particle at the centre and one at the circumference. Being differential, it depends directly upon the radius of the distorted body and inversely upon the third power of its distance away. As the space through which the force acts is proportional to the force itself, the effect is as the squares of the quantities mentioned, or, inversely, as the sixth power of the distance and as the square of the body’s radius. The result thus proves greatest on the planets nearest to the Sun, and diminishes rapidly as we pass outward from him. If, then, the solar force had had time enough to produce its effects, it would be first in Mercury and then in Venus that it should be seen. And this is precisely where we observe it. The Moon presents us a well-known case of such filial regard, resulting in permanent incompetency of action on its own account. It turns always the same face to us, following us about with the mute attention of a dog to its master. Here again the libration may be detected, for no dog Moon—full and half, photographed at the Lowell Observatory. Our Moon is not peculiar in having its day and its month the same. On the contrary, it is now the rule with satellites thus to protract their days. So far as we can observe, all the large satellites of Jupiter turn the same face to him; those of Saturn pay him a like regard; while about those of Uranus and Neptune we are too far off to tell. Their direct respect for their primary, with only secondary recognition of In our diagnosis of the cause of death in planets, we now pass from paralysis to heart failure. For so we may speak of the next affection which ends in their taking off, since it is due to want of circulation and lack of breath. It comes of a planet’s losing first its oceans and then its air. To understand how this distressing condition comes about, we must consider one of the interesting scientific legacies of the nineteenth century to the twentieth: the kinetic theory of gases. Illustrating molecular motion in a gas The kinetic theory of gases supposes them to be made up of minute particles all alike, which are perfectly elastic and are travelling hither and thither at great speeds in practically straight lines. In consequence, these are forever colliding among themselves, giving and taking velocities with bewildering rapidity, resulting in a state of confusion calculated to drive a computer mad. Somebody has likened a quiet bit of air to a boiler full of furious bees madly bent on getting out. The simile flatters the bees. To follow the vicissitudes of any one molecule in this hurly-burly would be out of the question; still more, it would seem, that of all of them at once. Yet no less Herculean a task confronts us. To find out about their motions, we are therefore driven to what is called the statistical method of inquiry,—which is simply a branch of the doctrine of probabilities. It is the method by which we learn how many people are going to catch cold in Boston next week when we know nothing about the people, or about colds, or about catching them. At first sight it might seem as if we could never discover anything in this hopelessly ignorant way, and as if we had almost better call in a doctor. But in the multitude of colds—not of counsellors—lies wisdom. So in other things not hygienic. As you cannot possibly divine, for instance, what each boy in town is going to In this only genuine method of prophecy, complete ignorance of all the actual facts, we are able without knowing anything whatever about each of the molecules to predicate a good deal about them all. To begin with, the pressure a gas exerts upon the sides of a vessel containing it must be the bombardment the sides receive from the little molecules; and the heating due this rain of blows, or the temperature to which the vessel is raised, must measure their energy of translation. On this supposition it is found that the laws of Avogadro and of Boyle are perfectly accounted for, besides many more properties of gases which the theory explains, and as nothing yet has been encountered seriously contradicting it, we may consider it as almost as surely correct as the theory of gravitation. To three great geniuses of the last century we owe this remarkable discovery—Clausius, Clerk Maxwell, and Boltzmann. By determining the density of a gas at a given temperature and under a given pressure, we can find by the statistical method the average speed of its molecules. It depends on the most probable distribution of their Distribution of molecular velocities in a gas. These speeds have been found for a temperature of freezing, and as the speed varies as the square root of the absolute temperature, we might suppose that when an adventurous or lucky molecule arrived at practically the limit of the atmosphere, where the cold is intense, it Now the speed which gravity on the Earth can control is 6.9 miles a second. It can impart this to a body falling freely to it from infinite space, and can therefore annul it on the way up, and no more. If, then, any of the molecules reach the outer boundary of the air going at more than this speed, they will pass beyond the Earth’s power to restrain. They will become little rovers in space on their own account, and dart As among the molecules some are already travelling at speeds in excess of this critical velocity, molecules must constantly be attaining to this emancipation, and thus be leaving the Earth for good. In consequence there is a steady drain upon its gaseous covering. Furthermore, as we know from comets’ tails, the repellent power of the light-waves, what we may call the levity of light, much exceeds upon such volatile vagrants the heat excitement or even the gravity of the Sun, so that we arrive at this interesting conclusion—their escape is best effected under cover of the night. Again, the heavier the gas, the less its molecular speed at a given temperature, because its kinetic energy which measures that temperature is one-half the molecule’s mass into the square of its speed. Thus their ponderosity prevents as many of them from following their more agile cousins of a different constitution. So that the lighter gases are sooner gone. Water-vapor leaves before oxygen. Nor is there any escape from this escape of the gases. It may take excessively long, but Another factor also is concerned. The smaller the planet, the lower the utmost velocity it can control, and the quicker, therefore, it must lose its atmosphere. For a greater number of molecules must at every instant reach the releasing speed. Thus those bodies that are little shall, perforce, have less to cover themselves withal. Now this inevitable depletion of their atmospheric envelopes, the aspects of the various planets strikingly attest. They do so in most exemplary fashion, according to law. The larger, the major planets, as we have already remarked, have a perfect plethora of atmosphere, more than we at least know what to do with in the way of cataloguing yet. The medium-sized, like our own Earth, have a very comfortable amount; Mars, an uncomfortable one, as we consider, and the smallest none at all. All the smaller bodies of our system are thus painfully deprived so far as we can discover. We are certain of it in the case of our Moon and Mercury, the only ones we can see well enough to be sure. In further evidence it has been shown at the Yerkes and at Flagstaff that no perceptible effect of air betrays itself in the spectroscopic imprint of the rings of Saturn, those tiny satellites of his, and very recently a spectrogram of Ganymede, Jupiter’s third moon, made at Flagstaff for the purpose by Mr. E. C. Slipher has proved equally void of atmospheric hint. Spectrogram of Saturn—Photographed by Dr. V. M. Slipher, Lowell Observatory, October 11, 1904. Exposure 4? on “27” gilt edge plate. Long camera placed beneath the slit. Titanium comparison spectrum. Enlargement by Mr. C. O. Lampland. Such has been the course taken, or still taking, by the bodies of our solar family. The latest generation has already succumbed to this ebbing of vitality with time. Every one of the satellites of the planets—those of Neptune, Uranus, Saturn, Jupiter, and our own Moon—is practically dead; born so the smaller which never were alive. Our own Moon carries its decrepitude on its face. To all intents and purposes its life is past; and that it had at one time a very fiery existence, the great lunar craters amply testify. It is now, for all its The same inevitable end, in default of others, is now overtaking the planetary group. Its approach is stamped on the face of Mars. There we see a world dying of exhaustion. The signs of it are legible in the markings we descry. How long before its work is done, we ignore. But that it is a matter of time only, our study of the laws of the inexorable lead us to conclude. Mars has been spared the fate of Mercury and Venus to perish by this other form of planetary death. Last in our enumeration of the causes by which the end of a world may be brought about, because the last to occur in order of time, is the extinction of the Sun itself. Certain to come and conclude the solar system’s history as the abode of life, if all the others should by any chance fail to precede it, it fittingly forms the climax, grand in its very quietude, of all that went before. By the same physical laws that caused our Earth once to be hot, the Sun shines to-day. Only its greater size has given it a life and a brilliancy denied to smaller orbs. The falling together of the scattered particles of which it is composed, caused, and still is causing, the dazzling splendor it emits. And so long as it remains gaseous, its temperature must increase, in spite of its lavish expenditure of heat, as Homer Lane discovered forty years ago. But the Sun’s store of heat, immense as it is to-day, and continued as it is bound to be for untold Æons by means of contraction of its globe upon itself, and possibly by other causes, must some day give out. From its present gaseous condition it must gradually but eventually contract to a solid one, and this in turn radiate all its heat into space. Slowly its lustre must dim as it becomes incapable of replenishing its supply of motive power by further shrinkage in size. Fitfully, probably, like Mira Ceti to-day, it will show temporary bursts of splendor as if striving to regain the brightness it had lost, only to sink after each effort into more and more impotent senility. At last some day must come, if we may talk of days at all when the great event occurs when all days shall be blotted out, that the last flicker shall grow extinct in the orb that for so long has made the hearth of the whole system. For, presciently enough, the Latin word focus means hearth, and the body which includes within it the focus about which all the planets revolve also constitutes the hearth from which they all are lighted and warmed. When this ultimate moment arrives and the last spark of solar energy goes out, the Sun will have reverted once more to what it was when the cataclysm of the foretime stranger awoke it into activity. It will again be the dark body it was when our peering into the past first In this kaleidoscopic biograph of the solar system’s life, each picture dissolves into its successor by the falling together of its parts to fresh adjustments of stability, as in that instrument of pleasure which so witched our childish wonder in early youth. Just as when a combination had proved so pretty, once gone, to our sorrow no turning of the handle could ever bring it back, so in the march of worlds no retrace is possible of steps that once are past. Inexorable permutations lead from one state to the next, till the last of all be reached. Yet, unlike our childhood’s toy, reasoning can conjure up beside the present picture far vistas of what preceded it and of what is yet to come. Hidden from thought only by the distraction of the day, as the universe to sight lies hid by the day’s overpowering glare, both come out on its withdrawal till we wonder we never gazed before. Our own surroundings shut out the glories that lie beyond. Our veil of atmosphere cloaks them from our view. But wait, as an astronomer, till Then as the half-light deepens, the universe appears. One by one the company of heaven stand forth to human sight. Venus first in all her glory brightens amid the dying splendor of the west, growing in lustre as her setting fades. From mid-heaven the Moon lets fall a sheen of silvery light, the ghostly mantle of her ghostlike self, over the silent Earth. Eastward Jupiter, like some great lantern of the system’s central sweep, swings upward from the twilight bow to take possession of the night. Beyond lies Saturn, or Uranus perchance dim with distance, measuring still greater span. All in order in their several place the noble cortÈge of the Sun is exposed to view, seen now by the courtesy of his withdrawal, backgrounded against the immensity of space. Great worlds, these separate attendants, and yet as nothings in No less a revelation awaits the opening of the shutters of the mind. If night discloses glimpses of the great beyond, knowledge invests it with a meaning unfolding and extending as acquaintance grows. Sight is human; insight seems divine. To know those points of light for other worlds themselves, worlds the telescope approaches as the years advance, while study reconstructs their past and visions forth their future, is to be made free of the heritage of heaven. Time opens to us as space expands. We stand upon the Earth, but in the sky, a vital portion not only of our globe, but of all of which it, too, forms part. To feel it is to enter upon another life; and if to realization of its beauty, its grandeur, and its sublimity of thought these chapters of its history have proved in any wise the portal, they have not been penned in vain. |