BEYOND Mars lies the domain of the asteroids, a domain vast in extent, that, untenanted by any large planet, stretches out to Jupiter. Occupied solely by a host of little bodies agreeing only in lack of size, even this space seems too small to contain them, for recent research has shown some transgressing its bounds. One, Eros, discovered by De Witt, more than trenches on Mars’ territory, having an orbit smaller than that of the god of war, and may be considered perhaps the forerunner of more yet to be found between Mars and the Earth. On the other side, three recently detected by Max Wolf at Heidelberg have periods equal to that of Jupiter, and in their motions appear to exemplify an interesting case of celestial mechanics pointed out theoretically by Lagrange long before its corroboration in fact was so much as dreamt. Achilles, Patroclus, and Hector, as the triad are called, so move as always to keep their angular distance from Jupiter unaltered in their similar circuits of the Sun. Orbits of the Outer Planets. Before considering these bodies individually, we may well look upon them en bloc, inasmuch as one attribute of the asteroids concerns them generically rather than specifically, and is of great interest both from a mechanical and an historical point of view. For, in fact, it is what led to their discovery. Titius of Wittenburg, about the middle of the eighteenth century, noticed a curious relation between the distances from the Sun of the then known planets. It consisted in a sort of regular progression, but with one significant gap. Bode was so For in the case of an explosion the various parts, unless perturbed, must all return in time to the scene of the catastrophe. By following his precept, two more were in fact detected in the next two years, Juno and Vesta. His hypothesis seemed to be confirmed. No new planets were discovered, and the old fulfilled fairly what was required of them. Lagrange on calculation gave it his mathematical assent. Nevertheless, it was incorrect, as events eventually showed, though for ASTEROIDS. MAJOR AXES OF ORBITS. Such restrictive action is not only at work to-day in the distribution of the asteroids and in the partitions of Saturn’s ring, but it must have operated still more in the past while the system was forming. To Professor Milham of Williamstown is due the brilliant suggestion that this was the force that fashioned the planetary orbits. For a planet In this manner we may perhaps be brought back to Bode’s law as representing within a certain degree of approximation a true mechanical result, although no such exact relation as the law demands exists. That a relation seemingly close to it is necessitated by the several successive inhibitions of each planet upon the next to form, is quite possible. One other general trait about their orbits is worth animadversion. In spite of being eccentric and inclined, they are all traversed in the same sense. Every one of the asteroids travels direct like the larger planets. In this they differ from cometary paths, which are as often retrograde as direct. Thus in more ways than one they hold a mid-course in regularity between the steady, even character of the planets proper and what was for long deemed the erratic behavior of the cometary class of cosmic bodies. Very telling this fact will be found with regard to the genesis of the solar family, as we shall see later. With regard now to their more individual characteristics, the asteroids may be said to agree in one point—their diversity, not only to all the larger members of the solar family, but to one another. For they travel in orbits ranging in ellipticity all the way from such as nearly approach circles to ellipses of cometary eccentricity. They voyage, too, without regard to the dynamical plane of the system, or, what is close to it, the ecliptic; departing from the general level often 30° and, in one instance, that of the little planet dubbed W. D., by as much as 48°. This eccentricity and inclination put them in a class by themselves. It is associated and unquestionably connected mechanically with another trait which likewise distinguishes them from the planets more particularly called—their diminutive size. Only four—Vesta, Ceres, Pallas, and Juno—out of the six hundred odd now known exceed a hundred miles in diameter, and the greater number are hardly over ten or twenty miles across. Very tiny worlds indeed they would seem, could we get near enough to them to discern their forms and features. Curiously enough, reasoning on certain light changes they exhibit has enabled us to divine something of their shapes, and even character. Thus it was soon perceived that Eros fluctuated in the light he sent us, being at times much brighter than at others. In February and March, 1901, the changes were such that their maximum exceeded three times Eros is not alone in thus exhibiting variation. Sirona, Hertha, and Tercidina have also shown periodic variability, and it is suspected in others. Indeed, it would be surprising did they not show change. For they are too small to have drawn their contents into symmetry, and so remain as they were when launched in space. Mammoth meteorites they undoubtedly are. With the asteroids we leave the inner half of the Sun’s retinue and pass to the outer. Indeed, the asteroids not only mark in place the transition bound between the two, but stamp it such mechanically. In their own persons they witness that no large body was here allowed to form. The culmination of coalition was reached in Jupiter, and that very acme of accretion prevented through a long distance any other. Drawing of Jupiter by In bulk, the major planets compared with the inner or terrestrial ones It is to appreciation of the detail visible on Jupiter’s disk that modern advance in the study of the planet is indebted. Examination has shown its features to be of great interest. To Mr. Stanley Williams of Brighton, England, much of our knowledge is due, and Mr. Scriven Bolton has also made some interesting contributions. The big print of the This brings us to the planet’s albedo, which MÜller at Potsdam has found to be 75 per cent. Now the interest attaching to this determination is twofold, that it bespeaks cloud and that it seems to I. II. S. N. Photograph A modern detection on Jupiter’s disk has been that of wisps or lacings across the bright equatorial belt, a detail of importance due to Recently photographs of Jupiter have been secured at Flagstaff, by the new methods there of planetary photography, showing a surprising amount of detail. The wisps come out with certainty, and the white spots, which are such a curious feature of the disk, have also left their impress on the plate. Not the least of the services thus rendered by the camera is the accurate positioning of the belts made possible by A like indifference to solar action is exhibited in the utter obliviousness of the belts to day or night. To them darkness and light are nugatory alike. They reappear round the sunrise edge of the disk just as they left it when they sank from sight round the sunset one, and they march across its sunlit face without so much as a flicker on their features. At twice the distance of Jupiter we cross the orbit of Saturn. Here the ringed planet, with an annual sweep of twenty-nine and a half of our years, pursues his majestic circuit of the Sun. Diademed with three or more circlets of light and diamonded by ten satellites, he rivals in his cortÈge that of his own lord. In some ways his surpasses the Sun’s. For certainly his retinue is the more spectacular of the two; the more so that it is much of it fairly comprised within a single glance. Very impressive Saturn is as, attended thus, he sails into the field of view. Saturn—A drawing by Dr. Lowell, His most unique possession are his rings. Broad, yet tenuous, they weigh next to nothing, being, as Struve has dubbed them, “Immaterial The mechanical marvel was not appreciated by early astronomers, who took it for granted that they were what they seemed, solid, flat rings, all of a piece. Even Laplace considered it sufficient to divide them up concentrically to insure stability. To Edouard Roche of Montpellier, as retiringly modest as he was penetratingly profound, is due the mathematical detection that to subsist they must be composed of discrete particles,—brickbats, Clerk Maxwell called them, when, later, unaware of Roche’s work, he proved independently the same thing in his essay on Saturn’s rings. Peirce, too, in ignorance of Roche, had half taken the same step a little before, showing that they must at least be fluid. Then in 1895 Keeler ingeniously photographed the spectrum of both ball and rings to the revealing of velocities in the line of sight of the different portions of the spectrum exactly agreeing with the values mechanics demanded. The rings have usually been considered to be flat. At the time of their disappearance, however, knots have been seen upon them. It is as if their filament had suddenly been strung with beads. At the last occurrence of the sort in 1907, these beads were particularly well seen at several observatories, and were critically studied at Flagstaff. In For measurement showed that the knots were permanent in position, which, since the ring revolved, indicated that they extended all round it in spite of their not seeming to do so, and that their distances from Saturn were just what this cause should produce. The action observed was a corollary from the important principle of commensurability of orbital period. As we saw in the case of the asteroids, if two bodies be travelling round a third and their respective periods of revolution be commensurate, they will constantly meet one another in such a manner that great perturbation will ensue and the bodies be thrown out of commensurability of period. What has happened to the asteroids has likewise occurred in Saturn’s rings. The disturber in this case has been, not Jupiter, as with them, Such has been the chief action of the satellites on the rings: it has made them into the system we see. But if we consider the matter, we shall realize that a secondary result must have ensued—when we remember that the particles composing the rings must be very crowded for the rings to show as bright as they do, and also that, though relatively thin, the rings are nevertheless some eighty miles through. Now it is evident that any disturbance in so closely packed a system of small bodies as that constituting Saturn’s rings must result in collisions between the bodies concerned. Particles pulled out or in must come in contact with others pursuing their own paths, and as at each collision some energy is lost by the blow, a general falling in toward the planet results. At the same time, as the blow will not Saturn’s Rings. November 1907. Now the knots or beads on the rings appeared exactly inside the points where the satellites’ disturbing action is greatest, or, in other words, in precisely their theoretic place. We can hardly doubt that such, then, was their origin. The result must be gradually to force the particles as a rule nearer the planet, until they fall upon its surface, while a few are forced out to where they may coalesce into a satellite,—a result foreseen long ago by Maxwell. It is this process which in the knots we are actually witnessing take place, and which, like the corona about the The reason the out-of-plane particles are most numerous just inside the point of disturbance is not only that there the action throwing them out is most violent, but that all the time a levelling action quite apart from disturbance is all the time tending to reduce them again to one plane, as we shall see further on when we come to the mechanical forces at work. Thus the tore is most pronounced on its outer edge, and falls to a uniform level at its inner boundary. The effect is somewhat as represented in the adjoining cut, in which the vertical scale is greatly magnified:— The Tores of Saturn. Not drawn to scale. With Saturn ended the bounds of the solar system as known to the civilized world until 1781. On March 13 of that year Sir William Herschel in one of his telescopic voyages through space came upon a strange object which he at once saw was not a star, because of its very perceptible round disk, and which he therefore took for a peculiar kind By reckoning backward, it was found to have been seen and mapped several times as a star,—no less than twelve times by Lemonnier alone,—and yet its planetary character had slipped through his fingers. It can even be seen with the naked eye as a star of the 6th magnitude, and its course is said to have been watched by savage tribes in Polynesia long before Sir William Herschel discovered it. Its greenish blue disk indicates that it is about thirty-two thousand miles in diameter, and its mass that its density is about 0.22 of the Earth’s or, like Jupiter’s, somewhat greater than water. Of its surface we probably see nothing. Indeed, it is very doubtful if it have any surface properly so called, being but a ball of vapors. Its flattening, ¹/11 according to Schiaparelli, which is probably the best determination, agrees with the density given above, indicating its substance to be very light. Belts have faintly been descried traversing its disk after the analogy of Jupiter and Saturn. These would be much better known than they are but for the great tilt of the planet’s axis to the ecliptic, so that during a part of its immense annual sweep its The planet is attended by four satellites,—Ariel, Umbriel, Titania, and Oberon,—a midsummer night’s dream to a watcher of the skies. They travel in a plane inclined 98° to the ecliptic, so that their motion is nearly up and down to that plane and even a little backward. Whether their plane is also the equatorial plane of the planet, we do not know for certain. The observations as yet are not conclusive one way or the other. If the two planes should turn out not to coincide, it will open up some new fields in celestial mechanics. The belts have been thought to indicate divergence, but the most recent observations by Perrotin on them minimize this. They suggest, too, a rotation period of about ten hours, which is what we should expect. Its albedo, or intrinsic brightness, is, according to MÜller, 0.73, or almost exactly that of cloud. This tallies with the lack of pronouncement of the belts and is another argument against the reality of the recent diametral measurements, as all MÜller’s values are got by dividing the amount of light received by the amount of surface sending If we know but little about the actual surface of Uranus, we know now a good deal about its atmosphere. And this partly because atmosphere is almost all that it is. The satellites are the only solid thing in the system. If we needed a telltale that the solar system had evolved, the gaseous constitution of its primaries and the condensed state of their attendants would sufficiently inform us. Probably all the major planets are nothing but gas. It has been debated whether Jupiter be almost all vapor with a solid kernel beneath, or vapor entirely. That he grows denser toward the core is doubtless the case, but that he is anywhere other than a gaseous fluid is very unlikely. For if he had really begun to condense, he must have contracted to far within his present dimensions. The same is true of Uranus. The surprising thing about Uranus is the enormous extent of his atmosphere. The earliest spectroscopists perceived this, but the more spectroscopy advances, the greater and more interesting it proves to be. By pushing inquiry into the red end of the spectrum, hitherto a terra incognita, Dr. Slipher has uncovered a mass of as yet unexplained revelation. Of these remarkable spectrograms we shall speak later. Here In Uranus, then, we see a body in an early amorphous state, before the solid, the liquid, and the gaseous conditions of matter have become differentiate and settled each into distinctive place. Without even an embryo core its substance passes from viscosity to cloud. Neptune has proved a planet of surprises. Though its orbital revolution is performed direct, its rotation apparently takes place backward, in a plane tilted about 35° to its orbital course. Its satellite certainly travels in this retrograde manner. Then its appearance is unexpectedly bright, while its spectrum shows bands which as yet, for the most part, defy explanation, though they state positively the vast amount of its atmosphere and its very peculiar constitution. But first and not least of its surprises was its discovery,—a set of surprises, in fact. For “Neptune is much nearer the Sun than it ought to be,” is the authoritative way in which a popular historian puts the intruding planet in its place. For the planet failed to justify theory by not fulfilling Bode’s law, which Leverrier and Adams, in pointing out the disturber of Uranus, assumed “as they could do no otherwise.” Though not strictly correct, as not only did both geometers do otherwise, but neither did otherwise enough, the quotation may serve to bring Bode’s law into court, as it was at the bottom of one of the strangest and most generally misunderstood chapters in celestial mechanics. Very soon after Uranus was recognized as a planet, approximate ephemerides of its motion resulted in showing that it had several times previously been recorded as a fixed star. Bode himself discovered the first of these records, one by Mayer in 1756, and Bode and others found another made by Flamstead in 1690. These observations enabled an elliptic orbit to be calculated which satisfied them all. Subsequently others were detected. Lemonnier discovered that he had himself not discovered it several times, cataloguing it as a fixed star. Flamstead was spared a like mortification by being dead. For both these observers Sixteen of these pre-discovery observations were found (there are now nineteen known), which with those made upon it since gave a series running back a hundred and thirty years, when Alexis Bouvard prepared his tables of the planet, the best up to that time, published in 1821. In doing so, however, he stated that he had been unable to find any orbit which would satisfy both the new and the old observations. He therefore rejected the old as untrustworthy, forgetting that they had been satisfied thirty years before, and based his tables solely on the new, leaving it to posterity, he said, to decide whether the old observations were faulty or whether some unknown influence had acted on the planet. He had hardly made this invidious distinction against the accuracy of the ancient observers when his own tables began to be out and grew seriously more so, so that within eleven years they quite failed to represent the planet. The discrepancies between theory and observation attracted the attention of the astronomic world, and the idea of another planet began to be in the air. The great Bessel was the first to state definitely his conviction in a popular lecture at KÖnigsberg in 1840, and thereupon encouraged his talented assistant Flemming to begin Somewhat later Arago, then head of the Paris observatory, who had also been impressed with the existence of such a planet, requested one of his assistants, a remarkable young mathematician named Leverrier, to undertake its investigation. Leverrier, who had already evidenced his marked ability in celestial mechanics, proceeded to grapple with the problem in the most thorough manner. He began by looking into the perturbations of Uranus by Jupiter and Saturn. He started with Bouvard’s work, with the result of finding it very much the reverse of good. The farther he went, the more errors he found, until he was obliged to cast it aside entirely and recompute these perturbations himself. The catalogue of Bouvard’s errors he gave must have been an eye-opener generally, and it speaks for the ability and precision with which Leverrier conducted his investigation that neither Airy, Bessel, nor Adams had detected these errors, with the exception of one term noticed by Bessel and subsequently by Adams. The planet had scarcely been found when, on October 1, a letter from Sir John Herschel appeared in the London AthenÆum announcing that a But now came an even more interesting chapter in this whole strange story. Mr. Walker at Washington and Dr. Petersen of Altona independently came to the conclusion from a provisional circular orbit for the newcomer that Lalande had catalogued in the vicinity of its path. They therefore set to work to find out if any Lalande stars were This discovery enabled elliptic elements to be computed for it, when the surprising fact appeared that it was not moving in anything approaching the orbit either Leverrier or Adams had assigned. Instead of a mean distance of 36 astronomical units or more, the stranger was only at 30. The result so disconcerted Leverrier that he declared that “the small eccentricity which appeared to result from Mr. Walker’s computations would be incompatible with the nature of the perturbations of the planet Herschel,” as he called Uranus. In other words, he expressly denied that Neptune was his planet. For the newcomer Meanwhile Peirce had made a remarkable contribution to the whole subject. In a series of profound papers presented to the American Academy, he went into the matter more generally than either of the discoverers, to the startling conclusion “that the planet Neptune is not the planet to which geometrical analysis had directed the telescope, and that its discovery by Galle must be regarded as a happy accident.” 1. That the disturber’s mean distance must be between 35 and 37.9 astronomical units; 2. That its mean longitude for January 1, 1800, must have been between 243° and 252°,— were incompatible with Neptune. Either alone might be reconciled with the observations, but not both. In justification of his assertion that the discovery was a happy accident, he showed that three solutions of the problem Leverrier had set himself were possible, all equally complete and decidedly different He next showed that at 35.3 astronomical units, an important change takes place in the character of the perturbations because of the commensurability of period of a planet revolving there with that of Uranus. In consequence of which, a planet inside of this limit might equally account for the observed perturbations with the one outside of it supposed by Leverrier. This Neptune actually did. From not considering wide enough limits, Leverrier had found one solution, Neptune fulfilled the other. This more general solution, as Peirce was careful to state, does not detract from the honor due either to Leverrier or to Adams. Their masterly calculations, the difficulty of which no one who has not had some experience of the subject can appreciate, remain as an imperishable monument to both, as does also Peirce’s to him. |