ASTRONOMY is usually thought of as the study of the bodies visible in the sky. And such it largely is when the present state of the universe alone is considered. But when we attempt to peer into its past and to foresee its future, we find ourselves facing a new side of the heavens—the contemplation of the invisible there. For in the evolution of worlds not simply must the processes be followed by the mind’s eye, so short the span of human life, but they begin and end in what we cannot see. What the solar system sprang from, and what it will eventually become, is alike matter devoid of light. Out of darkness into darkness again: such are the bourns of cosmic action. The stars are suns; past, present, or potential. Each of those diamond points we mark studding the heavens on a winter’s night are globes comparable with, and in many cases greatly excelling, our own ruler of Had we no other knowledge of them, reasoning would suffice to demonstrate their existence. It is the logic of unlimited subtraction. Every self-shining star is continually giving out light and heat. Now such an expenditure cannot go on forever, as the source of its replenishing by contraction, accretion, or disintegration is finite. Long to our measures of time as the process may last, it must eventually have an end and the star finally become a cold dark body, pursuing as before its course, but in itself inert and dead; an orb grown orbÉd, in the old French sense. So it must remain unless some cosmic catastrophe rekindle it to life. The chance of such occurrence in a given time compared with the duration of the star’s light-emitting career will determine the number of dark stars relative to the lucent ones. The chance is undoubtedly small, and the number of dark bodies in space proportionally large. Reasoning, then, informs us first that such Valid as this reasoning is, however, we are not left to inference for our knowledge of them. There is a certain star amid the polar constellations known as Algol,—el Ghoul, the Arabs called it, or The DÆmon. The name shows they noticed how it winked its eye and recognized something sarcastically sinister in its intent. For once in two days and twenty hours its light fades to one-third of its usual amount, remains thus for about twenty minutes, and then slowly regains its brightness. Seemingly unmoved itself, its steady blinking from the time man first observed it took on an uncanniness he felt. To untelescoped man it certainly seemed demoniacal, this punctual recurrent wink. Spectroscoped man has learnt its cause. Goodricke in 1795 divined it, and research since has confirmed his keen intuition. Its loss of light is occasioned by the passing in front of it of a dark companion almost of its own size revolving about it in a close elliptic orbit. That this is the explanation of its strange behavior, the shift of its spectral lines makes certain, by showing that the bright star is receding from us at twenty-seven miles a second seventeen hours before the eclipse and coming towards us at about the same rate seventeen hours after it; its dark companion, therefore, doing the reverse. Algol is no solitary specimen of a mind-seen invisible star. Many eclipsing binaries of the same class are now known; and considering that the phenomenon could not be disclosed unless the orbital plane of the pair traversed the observer’s eye, an unlikely chance in a fortuitous distribution, we perceive how many such in truth there must be which escape recognition for their tilt. Algol and its dark companion, as seen from the Earth, as seen from above orbit. Star births of the sort have actually been noted. Every now and then a new star suddenly appears in the firmament—a nova as it is technically called. These apparitions date from the dawn of astronomic history. The earliest chronicled is found in the Chinese Annals of 134 b.c. It shone out in Scorpio and was probably the new star which Pliny tells us incited Hipparchus, “The Father of Astronomy,” to make his celebrated catalogue of stars. From this time down we have recorded instances of like character. One of the most famous was the “Pilgrim Star” of Tycho Brahe. That astronomer has left us a full account of it. “While I was living,” he tells us, “with my uncle in the monastery of Hearitzwadt, on quitting my chemical laboratory one evening, I raised my eyes to the well-known The new star, he informs us, was just like all other fixed stars, but as bright as Venus at her brightest. Those gifted with keen sight could discern it in the daytime and even at noon. It soon began to wane. In December, 1572, it resembled Jupiter, and a year and three months later had sunk beyond recognition to the naked eye. It changed color as it did so, passing from white through yellow to red. In May, 1573, it returned to yellow (“the hue of Saturn,” he expressly states), and so remained till it disappeared from sight, scintillating strongly in proportion to its faintness. Thirty-two years later another stranger appeared and was seen by Since 1860 there have been several such apparitions, and since 1876 it has been possible to study them with the spectroscope, which has immensely increased our knowledge of their constitution. Indeed, this instrument of research has really opened our eyes to what they are. Nova Cygni, in 1876, Nova AurigÆ, in 1892, and Nova Persei, in 1901, besides several others found by Mrs. Fleming on the Arequipa plates, were excellent examples, and all agreed in their main features, showing that novÆ constitute a type of stars by themselves, whose appearing in the first place and whose behavior afterwards prove them to have started from like cause and to have pursued parallel lines of development. As a typical case we may review the history of Nova AurigÆ. On February 1, 1892, an anonymous post-card was received by Dr. Copeland of the Royal Observatory, Edinburgh, that read as follows: “Nova in AurigÆ. In Milky Way, about 2° south of ? AurigÆ, preceding 26 AurigÆ. Fifth magnitude slightly brighter than ?.” The observatory staff at once looked for the nova and easily found it with an opera glass. They then examined it through a prism placed before their 24-inch reflector and found its spectrum. It proved to be that of a “blaze star.” Dr. Thomas D. Anderson turned out to be the writer of the anonymous post-card—his name modestly self-obliterated by the nova’s light. He had detected the star on January 24, but had only verified it as a new one on the 31st. Harvard College Observatory then looked up its archived plates. The plates showed that it had appeared sometime between December 1 and 10. Its maximum had been attained on December 20, after which it declined, to record apparently another maximum on February 3 of the 3.5 magnitude. From this time its light steadily waned till on April 1 it was only of the 16th magnitude or ¹/100000 of what it had been. In August it brightened again and then waned once more. Meanwhile its spectrum underwent equally strange fluctuations. At first it exhibited the bright lines characteristic of the flaming red solar prominences, the calcium, hydrogen, and helium lines flanked by their dark correlatives upon a continuous background, showing that both glowing and cooler gases were here concerned. The sodium lines, too, appeared, like those that come out in comets as they approach the furnace of the Sun. An outburst such as occurs in miniature in the solar chromosphere or outermost gaseous layer of the Sun was here going on upon a gigantic scale. A veritable spectral chaos next supervened, Now how are we to interpret these grandiose vicissitudes, visually and spectrally revealed? That we witnessed some great catastrophe is clear. The sudden increase of light of many thousand fold from invisibility to prominence shows that a tremendous cataclysm occurred. The bright lines in the spectrum confirm it and imply that vast upheavals like those that shake the Sun were there in progress, but on so stupendous a scale that, if for no other reason, we must dismiss the idea that explosions alone can possibly be concerned. The dark correlatives of the bright lines have been interpreted as indicating that two bodies were concerned, each travelling at velocities of hundreds of miles a second. But in Nova AurigÆ shiftings of the spectral lines implying six bodies at least were recorded, if such be attributed to motion in the line of sight, and Vogel was minded to throw in a few planets as well—as Miss Clerke pithily puts it. There is not room for so many on the stage of the cosmic drama. Other causes, as we now know, may also Mr. Monck suggested the idea that new stars are the result of old dark stars rushing through gaseous fields in space and rendered luminous by the encounter. Seeliger revived and developed this idea, which in certain cases is undoubtedly the truth. Probably this occurred to the new star of 1885 which suddenly blazed out almost in the centre of the great nebula in Andromeda. It behaved like a typical nova and in due course faded to indistinguishability. Something like it happened, too, in the nova of 1860, which suddenly flared up in the star cluster 80 Messier, outdoing in lustre the cluster itself, and then, too, faded away. But just as psychology teaches us that not only do we cry because we are sorrowful, but that we are sorrowful because we cry, so while a nova may be made by a nebula, no less may a nebula be made by a star. Let us see how this might be brought about and what sign manuals it would present. Suppose that the two bodies actually grazed. Then the
Spectrum of Nova Persei. (F. Ellerman, 40 in. Yerkes.) Now to put this theory to the proof. In the early morning of the 22d of February, 1901, Dr. Anderson, the discoverer of Nova AurigÆ, perceived that Algol had a neighbor, a star as bright as itself, which had never been there before. Within twenty-four hours of its detection the newcomer rivalled Capella, and shortly after took rank as the premier star of the northern hemisphere. Its spectrum on the 22d was found at Harvard College Observatory to be like that of Rigel, a continuous one
Then came what is the most suggestive feature in the whole event. On December 14, 1901. January 7 and 9, 1902. 1902. February 8, 1902. The Moving Nebula surrounding Nova Persei—after Ritchey. Clinching this conclusion is the result of a search by Perrine for traces of the nebula on earlier plates. For on one taken by him on March 29 (1901) he found the process already started in two close coils, its conception thus clearly dating from the time of the star’s outburst. In Nova Persei, then, we actually witnessed a spiral nebula evolved from a disrupted star. What was this ejectum and what drove it forth? Professor Very regarded it as composed of corpuscles such as give rise to cathode rays discharged from the star under the stress of light pressure or electric repulsion. But I think we may see in it something simpler still; to wit, gaseous molecules driven off by light pressure alone—the smoke, as one may say, of the catastrophe—akin exactly to the constituents of comet’s tails. The mere light of the conflagration pushed the hydrogen molecules away. This would explain their presence and their exceeding hurry at the same time. They were started on their travels by domestic jars and kept going by the vivid after-effects of that infelicity. The fairly steady rate of regression from the nova observed may be explained by the observed decrease in the light of the repellent source. Such combined with the retarding effect of gravity might make the regression equable. This is the more explanatory as the speed was certainly much less than that of light, though greatly exceeding any possible from the direct disruption. At the same time both the bright and the dark lines of hydrogen seen in the spectrum stand accounted for; the colliding molecules, at their starting on their travels from the star, shining through their sparser fellows farther out. An interesting biograph of the levity of light! Nova Persei thus introduces us at its birth to one of a class of most interesting objects comparatively recently discovered and of most pregnant import,—the spiral nebulÆ. Great Nebula in Orion—after Ritchey. Great Nebula in Andromeda—after Ritchey. Nebula M. 100 ComÆ—after Roberts. In 1843 when Lord Rosse’s giant speculum, six feet across, was turned upon the sky, a nebula was brought to light which was unlike any ever before seen. It was neither irregular like the great nebula in Orion nor round like the so called planetary nebulÆ,—the two great classes at that time known,—but exhibited a striking spiral structure. It proved the forerunner of a remarkable revelation. For the specimen thus disclosed has turned out to typify not only the most interesting form of those heavenly wreaths of light, but by far the commonest as well. As telescopic and especially photographic means improved, the number of such objects detected steadily increased until about thirteen years ago Keeler by his systematic discoveries of them came to the conclusion that a spiral structure pervaded the great majority of all the nebulÆ visible. Their relative universality was outdone only by the invariability of their form. For they all represent spirals of one type: Nebula ? I. 226 UrsÆ Majoris—after Roberts. As should happen if the spirals are unrelated, left-handed and right-handed ones are about equally common. In Dr. Roberts’ great collection of those in which the structure is distinctly discernible, nine are right-handed, ten left-handed, showing that they partake of the ambidextrous impartiality of space. Nebula ? V. 24 ComÆ—after Roberts. Showing globular structure. Lastly the spirals are evidently thicker near the centre, thinning out at the edge, and when the central nucleus is pronounced, it seems to have a certain globularity not shared by the arms, and more or less detached from them. This appears in those cases where they are shown us edgewise, and it has been thought perceptible in the great nebula of Andromeda. The difficulty in establishing the phenomenon comes from the impossibility of both features showing at their best together. For the globularity to come out well, the spiral must be presented to us nearly in the plane of sight; for the spirality, in a plane at right angles to it. Much may be learnt by pondering on these peculiarities. The widespread character of the phenomenon points to some universal law. We are here clearly confronted by the embodiment of a great cosmic principle, causing the helices it is for us to uncoil. It is a problem in mechanics. In the first place, a spiral structure denotes action on the face of it. It implies a rotation combined with motion out or in. We are familiar with the fact in the sparks of pin-wheel pyrotechnics. Any rotating fluid urged by an outward or an inward impulse must take the spiral form. A common example occurs in the water let out of a basin through a hole in the centre when we draw out the plug. Here the force is inward, and because the bowl and orifice are not perfectly symmetric, a rotation is set up in the water trying to escape, and the two combine to give us a beautiful conchoidal swirl. In this case the particles seek the centre, but the same general shape is assumed when they seek to leave it. Another point to be noticed is that a spiral nebula could not develop of itself and subsist. To continue it must have outside help. For if it were due to internal explosive action in the pristine body, each ejectum must return to the point it started from, or else depart forever into space, for the orbit it would describe must either be closed or unclosed. If the former, it would revisit its starting-point; if the latter, it would never return. Explosion, therefore, of itself could not have produced the forms we see, unless they be ephemeral apparitions, a supposition their presence throughout the heavens seems effectually to exclude. Nebula M. 101 UrsÆ Majoris—after Ritchey. Suppose, now, a stranger to approach a body in space near enough; it will inevitably raise tides in the other’s mass, and if the approach be very close, the tides will be so great as to tear the body in pieces along the line due to their action; that is, parts of the body will be separated from the main mass in two antipodal directions. This is precisely what we see in the spiral nebula. Nor is there any other action that we know of which would thus handle the body. If it were to disintegrate under increased speed of rotation due to contraction upon itself, parts of its periphery should be shed continually and a pin-wheel of matter, not a two-armed spiral, be thrown off. If explosion were the disintegrating cause, disruption would occur unsymmetrically in one or more directions, not symmetrically as here. REPRESENTATIVE STELLAR SPECTRA Photographed, in 1907 and 1908, by V. M. SLIPHER, at LOWELL OBSERVATORY Before proceeding to what proof we have that it actually did occur in this way we may pause to consider some consequences of what we have already learned. Thus what brought about the beginning of the system may also compass its end. If one random encounter took place in the past, a second is as likely to occur in the future. Another celestial body may any day run into the Sun, and it is to a dark body that we must look for such destruction, because they are so much more numerous in space. That any of the lucent stars, the stars commonly so called, could collide with the Sun, or come near enough to amount to the same thing, is demonstrably impossible for Æons of years. But this is far from the We can calculate how much warning we should have of the coming catastrophe. The Sun with its retinue is speeding through space at the rate of eleven miles a second toward a point near the bright star Vega. Since the tramp would probably also be in motion with a speed comparable with our own, it might hit us coming from any point in space, the likelihood depending upon the direction and amount of its own speed. So that at the present moment such a body may be in any part of the sky. But the chances are greatest if it be coming from the direction toward which the sun is travelling, since it would then be approaching us head on. If it were travelling itself as fast as the Sun, its relative speed of approach would be twenty-two miles a second. The previousness of the warning would depend upon the stranger’s size. The warning would be long according as the stranger was large. Let us With these data we can find how long it would be visible before the collision occurred. As a very small telescopic star it would undoubtedly escape detection. It is not likely that the stranger would be noticed simply from its appearance until it had attained the eleventh magnitude. It would then be one hundred and forty-nine Our exterior sentinels might fail thus to give us warning of the foreign body because of being at the time in the opposite parts of their orbits. We should then be first apprised of its coming by Saturn, which would give us less prefatory notice. It would be some twenty-seven years from the time it entered the range of vision of our present telescopes before it rose to that of the unarmed eye. It would then have reached forty-nine astronomical units’ distance, or two-thirds as far again as Neptune. From here, however, its approach would be more rapid. Humanity by this time would have been made acquainted with its sinister intent from astronomic calculation, and would watch its slow gaining in conspicuousness with ever growing alarm. During the next three years it would have ominously increased to a first magnitude star, and two years and three months more have reached the distance of Jupiter and surpassed by far in lustre Venus at her brightest. Meanwhile the disturbance occasioned not simply in the outer planets but in our own Earth would have become very alarming indeed. The seasons would have been already greatly changed, and the year itself lengthened, and all these changes fraught with danger to everything upon the Earth’s face would momentarily grow worse. In one hundred and forty-five days from the time it passed the distance of Jupiter it would reach the distance of the Earth. Coming from Vega, it would not hit the Earth or any of the outer planets, as the Sun’s way is inclined to the planetary planes by some sixty degrees, but the effects would be none the less marked for that. Day and night alone of our astronomic Unless the universe is otherwise articulated than we have reason to suppose, such a catastrophe sometime seems certain. But we may bear ourselves with equanimity in its prospect for two mitigating details. One is that there is no sign whatever at the moment that any such stranger is near. The unaccounted-for errors in the planetary theories are not such as point to the advent of any tramp. Another is, that judged by any scale of time we know, the chance of such occurrence is immeasurably remote. Not only may each of us rest content in the thought that he will die from causes of his own choosing or neglect, but the Earth herself will cease to be a possible abode of life, and even the Sun will have become cold and dark and dead so long before that day arrives that when the final shock shall come, it will be quite ready for another resurrection. |