CHAPTER XXXI THE HUSBANDING OF WATER

Previous

That the canals and oases are of artificial origin is thus suggested by their very look; when we come to go further and inquire into what may be their office in the planet’s economy, we find that the idea in addition to its general probability now acquires particular support. For this we are indebted in part to study of their static aspect, but chiefly to what has been learnt of their kinematic action.

Dearth of water is the key to their character. Water is very scarce on the planet. We know this by the absence of any bodies of it of any size upon the surface. So far as we can see the only available water is what comes from the semi-annual melting at one or the other cap of the snow accumulated there during the previous winter. Beyond this there is none except for what may be present in the air. Now, water is absolutely essential to all forms of life; no organisms can exist without it.

But as a planet ages, it loses its oceans as has before been explained, and gradually its whole water supply. Life upon its surface is confronted by a growing scarcity of this essential to existence. For its fauna to survive it must utilize all it can get. To this end it would be obliged to put forth its chief endeavors, and the outcome of such work would result in a deformation of the disk indicative of its presence. Lines of communication for water purposes, between the polar caps, on the one hand, and the centres of population, on the other, would be the artificial markings we should expect to perceive.

Now, it is not a little startling that the semblance of just such signs of intelligent interference with nature is what we discern on the face of Mars,—in the canals and oases. So dominant in its mien is the pencil-like directness of the canals as to be the trait that primarily strikes an unprejudiced observer who beholds this astounding system of lines under favorable definition for the first time, and its impressiveness only grows on him with study of the phenomena. That they suggested rule and compass, Schiaparelli said of them long ago, without committing himself as to what they were. In perception the great observer was, as usual, quite right; and the better they are seen the more they justify the statement. Punctilious in their precision, they outdo in method all attempts of freehand drawing to copy them. Often has the writer tried to represent the regularity he saw, only to draw and redraw his lines in vain. Nothing short of ruling them could have reproduced what the telescope revealed. Strange as their depiction may look in the drawings, the originals look stranger still. Indeed, that they should look unnatural when properly depicted is not unnatural if they are so in fact. For it is the geodetic precision which the lines exhibit that instantly stamps them to consciousness as artificial. The inference is so forthright as to be shared by those who have not seen them to the extent of instant denial of their objectivity. Drawings of them look too strange to be true. So scepticism imputes to the draughtsman their artificial fashioning, not realizing that by so doing it bears unconscious witness to their character. For in order to disprove the deduction it is driven to deny the fact. Now the fact can look after itself and will be recognized in time. For that the lines are as I have stated is beyond doubt. Each return of the planet shows them more and more geometric as sites are bettered and training improves.

Suggestive of design as their initial appearance is, the idea of artificiality receives further sanction from more careful consideration, even from a static point of view, on at least eight counts:—

1. Their straightness;

2. Their individually uniform size;

3. Their extreme tenuity;

4. The dual character of some of them;

5. Their position with regard to the planet’s fundamental features;

6. Their relation to the oases;

7. The character of these spots; and, finally,

8. The systematic networking by both canals and spots of the whole surface of the planet.

Now, no natural phenomena within our knowledge show such regularity on such a scale upon any one of these eight counts, a fortiori upon all. When one considers that these lines run for thousands of miles in an unswerving direction, as far relatively as from London to Bombay, and as far actually as from Boston to San Francisco, the inadequacy of natural explanation becomes glaring.

These several counts become more expressive of design the farther one looks into them. Straightness upon a sphere means the following of an arc of a great circle. The lines, then, are arcs of great circles. Now, the great circle course is the shortest distance connecting two given points. The canals of Mars, then, practice this economy; they connect their terminals by the shortest, that is, other things equal, by the quickest and least wasteful path. Their preserving a uniform width throughout this distance is an equally unnatural feature for any natural action to exhibit, but a perfectly natural one for an unnatural agent. For means of communication for whatever cause would probably be fashioned of like countenance throughout. Their extreme tenuity is a third trait pointing to artificiality; inasmuch as the narrower they are, the more probable is their construction by local intelligence. Even more inexplicable, except from intent, is their dual character. For them to parallel one another like the twin rails of a railway track, seems quite beyond the powers of natural causation. Enigmatic, indeed, from a natural standpoint, they cease to be so enigmatic viewed from an artificial one; and this the more by reason of what has lately been learnt of the character of their distribution. That they are found most plentifully near the equator, where the latitudinal girth is greatest, and thence diminish in numbers to about latitude 60°, where they disappear,—and this not relatively to the amount of surface but actually,—is very significant. It is quite incapable of natural explanation, and can only be accounted for on some theory of design such as lines of communication, or canals conducting water down the latitudes for distribution. So that this distribution of the doubles is in keeping with the law of development disclosed by the canals en masse. Channels and return-channels the two lines of the pair may be, but about this we can at present posit nothing. The relation may be of still greater complexity, and we must carefully distinguish between surmise and deduction.

The position of the canals, with regard to the main features of the disk, has a cogency of its own, an argument from time. The places from which the lines start and to which they go are such as to imply a dependence of the latter upon the former chronologically. The lines are logically superposed upon the natural features; not as if they had grown there, but as if they had been placed there for topographic cause. Those termini are used which we should ourselves select for stations of intercommunication. For the lines not only leave important geodetic points, but they travel directly to equally salient ones.

The connection of the canals with the oases is no less telltale of intent. The spots are found only at junctions, clearly the seal and sanction of such rendezvous. Their relation to the canals that enter them bespeaks method and design. Centring single lines, they are inclosed by doubles, a disposition such as would be true did they hold a pivotal position in the planet’s economy.

The shape of the oases also suggests significance. Their form is round, a solid circle of shading of so deep a tone as to seem black, although undoubtedly in truth blue-green. Now, a circular area has this peculiar property, that it incloses for a given length of perimeter the maximum of space. Any other area has a longer inclosing boundary for the surface inclosed. Considering each area to be made up of onion-like envelops to an original core, each similar in shape to the kernel, we see that the property in question means that the average distance for points of the circular area from the centre is less than the same distance for those of any other figure. This has immediate bearing on the possible fashioning of such areas. For sufficient intelligence in the fashioners would certainly lead to a construction, where the greatest area could be attended to at the least expenditure of force. This would be where the distance to be traveled from the centre to all the desired points was on the average least; that is, the area would be round.

But last and all-embracing in its import is the system which the canals form. Instead of running at haphazard, the canals are interconnected in a most remarkable manner. They seek centres instead of avoiding them. The centres are linked thus perfectly one with another, an arrangement which could not result from centres, whether of explosion or otherwise, which were themselves discrete. Furthermore, the system covers the whole surface of the planet, dark areas and light ones alike, a world-wide distribution which exceeds the bounds of natural possibility. Any force which could act longitudinally on such a scale must be limited latitudinally in its action, as witness the belts of Jupiter or the spots upon the sun. Rotational, climatic, or other physical cause could not fail of zonal expression. Yet these lines are grandly indifferent to such compelling influences. Finally, the system after meshing the surface in its entirety runs straight into the polar caps.

It is, then, a system whose end and aim is the tapping of the snow-cap for the water there semiannually let loose; then to distribute it over the planet’s face.

Function of this very sort is evidenced by the look of the canals. Further study during the last eleven years as to their behavior leads to a like conclusion, while at the same time it goes much farther by revealing the action in the case. This action proves to be not only in accord with the theory, but interestingly explanatory of the process.

In the first place, the canals have shown themselves, as they showed to Schiaparelli, to be seasonal phenomena. This negatives afresh the possibility of their being cracks. But furthermore, their seasonal behavior turns out to follow a law quite different from what we know on earth and betokens that they are indebted to the melting of the polar cap for their annual growth, even more directly than to the sun, and that vegetation is the only thing that satisfactorily accounts for their conduct. But again this is not all. Their time of quickening proceeds with singular uniformity down the disk, not only to, but across the equator. Now, this last fact has peculiar significance.

So large are the planetary masses that no substance can resist the strains due to the cosmic forces acting on them to change their shape till it becomes one of stable equilibrium. Thus a body of planetary size, if unrotating, becomes a sphere except for solar tidal deformation; if rotating, it takes on a spheroidal form exactly expressive, as far as observation goes, of the so-called centrifugal force at work. Mars presents such a figure, being flattened out to correspond to its axial rotation. Its surface, therefore, is in fluid equilibrium, or, in other words, a particle of liquid at any point of its surface at the present time would stay where it was, devoid of inclination to move elsewhere.

Now, the water which quickens the verdure of the canals moves from the neighborhood of the pole down to the equator as the season advances. This it does, then, irrespective of gravity. No natural force propels it, and the inference is forthright and inevitable that it is artificially helped to its end. There seems to be no escape from this deduction. Water flows only downhill, and there is no such thing as downhill on a surface already in fluid equilibrium. A few canals might presumably be so situated that their flow could, by inequality of terrane, lie equatorward, but not all. As we see on the earth, rivers flow impartially to all points of the compass, dependent only upon unevenness of the local surface conditions. Now, it is not in particular but by general consent that the canal system of Mars develops from pole to equator.

From the respective times at which the minima take place, it appears that the canal-quickening occupies fifty-two days, as evidenced by the successive vegetal darkenings to descend from latitude 72° north to latitude 0°, a journey of 2650 miles. This gives for the water a speed of fifty-one miles a day, or 2.1 miles an hour. The rate of progression is remarkably uniform; and this abets the deduction as to assisted transference. The simple fact that it is carried from near the pole to the equator is sufficiently telltale of extrinsic aid, but the uniformity of the action increases its significance.

But the fact is more unnatural yet. The growth pays no regard to the equator, but proceeds across it as if it did not exist into the planet’s other hemisphere. Here is something still more telling than its travel to this point. For even if we suppose, for the sake of argument, that natural forces took the water down to the equator, their action must there be certainly reversed and the equator prove a dead-line to pass which were impossible.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page