CHAPTER XVIII THE DOUBLE CANALS

Previous

I

Rightly viewed, no more subtle tribute could be paid to the remarkable character of the phenomenon of gemination than the scepticism with which it was immediately received and which it still continues to elicit. That the sight should be regarded as illusory speaks for its surpassing strangeness; and so far as oddity goes the encomium is certainly deserved. Of the bizarre features of this curiously marked disk, the double canals were at the time of their discovery the culmination, and though things stranger still if possible have since been seen there, it is not wonderful that doubt should still incredulously stare. If the mere account of them reads like romance, to see them is an experience.

Nothing astronomical that I have ever seen has been so startlingly impressive as my first view of a double canal. Even in narration the thing justifies its effect. For a double canal consists of a pair of twin dark filaments, perfectly parallel throughout their course and inclosing between them ground of the same ochreish cast as that which lies without. Only on occasion is this tint of their midway departed from, and then only toward a darkening, never toward a lightening of it. Except for appearing paired, the lines resemble precisely the usual single canals. In length they vary from a few hundred to a few thousand miles, while in width each component, for narrowness, hardly permits of definite ascription.

Compared for strength with the usual canal the lines of a double seem to hold on the average an intermediate position between the larger and the smaller of the single canals so far detected. Owing, however, to the massed effect of the pair by reason of their closeness, they have an advantage in showing over the singles of two to one. And this renders them among the most conspicuous and important meshes of the canal network.

Like the single canals, they vary in strength with the Martian time of year; at certain seasons developing into heavy pencil lines and at others fading away to the merest gossamers, only just discernible like cobwebs stretched across the face of the planet.

Although the individual constituent lines vary in aspect and never rise at their most to cognizable breadth, the distance parting their centres, or the width of the double, is quite measurable. The only difficulty in the way of its determination lies in the absence of a procurable unit small enough to mete it. The usual spider-threads of the micrometer are colossal in comparison with these filaments and present a standard only analogic at best. Nevertheless, by means of the finest threads that could be got, estimates of the distance between the pairs were made at Flagstaff in 1905, and the results agree as closely as the means permit with those got by measurement of the doubles as depicted in the drawings.

Martian doubles.

Of what they look like, the following illustrations give a fair idea, only that instead of being more geometrically regular in the drawing than in reality the fact is the other way. Freehand draftsmanship at the telescope is incapable of rendering their ruled effect. No railway metals could be laid down with more precision. As to their size, the following figures derived from a typical double canal, the Phison, give some conception. This great artery of intercommunication between the Sabaeus Sinus and the Nilosyrtis is, roughly speaking, 2250 miles long; the distance between the centres of the two constituents is about 130 miles, and each line is perhaps 20 miles in breadth, when at its maximum strength. The pair follow, apparently, the arc of a great circle from the Portus Sigaeus on the Mare Icarium to the Pseboas Lucus in latitude 40° north. The Portus Sigaeus consists of two little nicks in the coastline, looking like the carets one makes in checking off items down a list, if the space between the down and up strokes were then filled in; the Pseboas Lucus, on the other hand, is a large round dot like a small ink spot. To these two differently appearing spots, the twin lines of the Phison behave differently. While each line leaves centrally its own caret of the Portus Sigaeus at the south, at the north each touches peripherally the Pseboas Lucus, on the east and west sides respectively, the two thus just holding the Lucus between them. In position the lines are invariable, though in visibility not. Sometimes only one is seen, sometimes both show faintly, and sometimes both are conspicuously strong. The delicacy of the observations by which this detail was established is second only to its importance. It destroys at a stroke all possibility of diplopic unreality, since were that the fact the Pseboas Lucus should be doubled, which it is not. At the same time it opens vistas into the true construction of the things themselves, at present more suggestive than satisfactory.

Martian doubles (corroborating the above).

In the great circle character of its course the Phison is quite normal. The majority of the double canals pursue the like method, running straight over the surface from one point to another, the constituents remaining equidistant throughout. But such forthrightness of direction, though the rule, is not without exceptions. The Thoth-Nepenthes, for example, sweeps round in a seemingly continuous curve to the west-southwest from the Aquae Calidae to the Lucus Moeris like some mighty bow perpetually bent. Nevertheless its lines are no less careful for all their curving to keep their distance from one end to the other of their course. The quality of being paired rises superior to change of direction.

II

Now, the first point to be noticed about the doubles is that bilateralism, or the quality of being double, is not a universal trait of the canals, either actually or potentially; it is not even a general one. Out of the four hundred canals seen at Flagstaff, only fifty-one have at any time displayed the quality; that is, one eighth roughly of the whole number observed. This point is most important; for the fact is of itself enough to disprove any optical origin for the phenomenon. The characteristic of doubling so confidently ascribed by those who have not seen it to general optical or ocular principles proves thus the exception, not the rule, with the canals, and by so doing disowns the applicability of any merely optical solution. We shall encounter many more equally prohibitive bars to illusory explanation before we have done with the doubles, but it is interesting to meet one in this manner at the very threshold of the subject.

On the other hand, the characteristic when possessed is persistent in the particular canal, in posse if not in esse. Once shown by a canal, that canal may confidently be looked to at a proper time to disclose it again. In short, bilateralism, or the state of being dual, is an inherent attribute of the individual canal, as idiosyncratic to it as position and size.

The catalogue of canals possessing this property, so far as they have been detected at Flagstaff to date, number fifty-one if we include in the list wide parallels like the Nilokeras I and II. Eight of these were observed in 1894; nineteen more were added in 1896, making twenty-seven; in 1901 the total was raised to thirty; in 1903 to forty-eight; and in 1905 to fifty-one. Arranged by years they are tabulated below, where the numeral to the left registers for each its first recording and the position held by it in the list. The starred canals much exceed the others in width, and possibly denote a different phenomenon.

Date Confused
1894
1. Ganges
2. Nectar
3. Euphrates
4. *Nilokeras I and II
5. Phison
6. Asopus
7. Jamuna
8. Typhon
1896-7
Ganges Typhon
Euphrates Avernus S.
Phison
9. Lethes
Jamuna
10. Dis S.
11. Titan
12. Laestrygon
13. Tartarus
14. Cocytus
15. Sitacus
16. Amenthes
17. Adamas
18. Cerberus N.
19. Cerberus S.
20. Cyclops
21. Gelbes
22. Erebus
23. Avernus N.
24. Gigas
25. Alander
26. Gihon
27. Hiddekel
1900-1
Phison Dis S.
Euphrates Boreas
Hiddekel Cerberus S.
Amenthes Jamuna
Cerberus N. Pyramus
Cyclops Laestrygon
Ganges
28. Deuteronilus
Sitacus
Adamas
29. Djihoun
Gihon
30. Is
1903
Djihoun Typhon
Hiddekel Orontes
Phison
Euphrates
31. Protonilus
Gihon
32. Marsias
Amenthes
Laestrygon
Cyclops
Gigas
*Nilokeras I and II
Ganges
Deuteronilus
33. Pierius
34. Callirrhoe
Jamuna
Sitacus
35.
Astaboras S.
36. Nar
37. Chaos
38. Aethiops
39. Hyblaeus
40. Eunostos
41. Thoth
42. Nepenthes
43. Triton
44. Pyramus
45. Fretum Anian
46. Vexillum
Lethes
Cerberus S.
47. Nilokeras I
Cerberus N.
48. Tithonius
1905
Nilokeras Ganges
Hiddekel Chrysorrhoas
Djihoun
Sitacus
Phison
Euphrates
Amenthes
Vexillum
Astaboras S.
Adamas
Cyclops
Cerberus S.
Cerberus N.
Tartarus
49. *Propontis
Gigas
Gihon
Nepenthes
Thoth
Laestrygon
50. Polyphemus
Deuteronilus
Triton
Eunostos
Tithonius
Callirrhoe
Pyramus
Nar
Protonilus
51. Naarmalcha

In spite of possessing the property of pairing, a canal may not always exhibit it. To the production of the phenomenon the proper time is as essential as the property itself. So far as a primary scanning or first approximation is capable of revealing, a canal will be single at one Martian season and double at another. Thus these canals alternated in their state to Schiaparelli and for the earlier of his own observed oppositions to the writer. In consequence Schiaparelli deemed gemination a process which the canal periodically underwent. Three stages in the development were to him distinguishable: the single aspect, a short confused aspect, and the clearly dual one.

In the single state the canal remained most of the time. It then underwent a chrysalid stage of confusion to emerge of a sudden into a perfect pair. Furthermore, he noted the times at which the pairing took place, to the formulating of a law in the case—derived from the observations of more than one opposition. His law was that the gemination occurred, on the average, three months (ours) after the summer solstice of the northern hemisphere, lasted four to five months, then faded out to begin afresh one month after the vernal equinox of the same hemisphere and continue for four months more. Expressed in Martian seasonal chronology, the periods would be about half as long. At certain times then the most pronounced specimens of doubles showed obstinately single, while the periodic metamorphosis that transformed them into duplicates was timed to the changes of the planet’s year. Gemination, then, was a seasonal phenomenon.

Advance in our knowledge of the phenomenon since Schiaparelli’s time, while still showing the thing to be of seasonal habit, has changed our conception of it. It now appears that in some cases certainly, and possibly in all, the dual aspect is not a temporary condition, but the differing pronouncement of a permanent state, the fact of gemination so called being confined to a filling out of what is always skeletonly there. As the canals have come to be better seen, the three stages of existence have in some cases become recognizable as only different degrees in discernment of an essential double condition; the single appearance being due to the relative feebleness of one of the constituents and the confused showing to the weakness of both, which are then the more easily blurred by the air waves. In certain canals the last few oppositions, 1901, 1903, and 1905, have disclosed this unmistakably to be the case, as with the Phison and Euphrates, for example. With them the double character has been continuously visible, appearing not only when by Schiaparelli’s law it should, but at the times when it should not; only on these latter occasions it was harder to see, whence the reason it was previously missed. So that further scrutiny, while in no sense discrediting the earlier observations, has extended to them some modification, and disclosed the underlying truth to be the varying visibility, the thing itself, except for strength in part or whole, persisting the same. Improvement in definition has lowered the see-level to revelation of continuous presence of the dual state. It is only on occasion that the improvement is sufficient for the thing when at its feeblest to loom thus above the horizon of certainty; yet at such moments of a rise in the seeing it is enough to allow it to be glimpsed. Thus it fared with the Adamas at the opposition of 1903, with the Gigas, and with many another in years gone by. Separation has come with training and generally in the case of the wider doubles, which leads one to infer that ease of resolution is largely responsible for assurance of the permanency of the dual state. Perplexing exceptions, however, remain, so that it is possible at present only to predicate the principal of most of the double canals but not of all. Leaving the exceptions out of account for the moment, we pass to those general characteristics which are intimately linked with what has just been said.

Inasmuch as the act of getting into a state antedates the fact of being there, it is logical to let the description of the first precede. An account of the process of gemination may thus suitably come before that of its result.

Flux, affecting the double canals in whole or part, is the cause of the apparent gemination. According as the flux is partitive or total is a single or a dual state produced. At the depth of its inconspicuousness the canal may cease to be visible at all; this occurs when both lines fade out. On the other hand, the one line may outfade the other, and we are presented with a seemingly single canal, at this its minimum showing. In such seasons of debility the one line may appear and the other not, or occasionally the other show and the one not, according to the air waves of the moment. It is at these times that the double simulates a single canal, and unless well seen and carefully watched might easily masquerade successfully as such. The Hiddekel in the depth of its dead season is peculiarly given to this alternately partitive presentation. As the flux comes on, one or both lines feel it. If one only we are likely to have a confused canal; if both, a difficult double. The strength of the lines increases until at last both attain their maximum, and the canal stands revealed an unmistakable pair, the two lines paralleling one another in appearance as in position.

At the canal’s maximum and minimum the equality of its two constituents is chiefly to be remarked, though it occurs on other occasions as well. But, what is significant, when the two differ it is always the same one that outdoes its fellow. It may be the right-hand twin in one pair, the left-hand one in another; but whichever it be, for the particular canal its preËminence is invariable. It is this canal which, except for adventitious help or hindrance from the air-waves, alone shows when the double assumes the seemingly single state. We may therefore call it the original canal, the other being dubbed the duplicate. In some cases it has been possible to decide which is which. It might seem at first sight as if this point should always be ascertainable. But the determination is more dilemmic than appears, not from any difficulty in seeing the canal, but from the absence of distinguishing earmark at its end. In a long stretch of commonplace coast, the precise point of embouchure of a solitary canal cannot be so certainly fixed as to be decisive later between two which show close together in the same locality. It is only where some landmark points the canal’s terminal that the problem admits of definite solution. This telltale tag may be a bay like the Margaritifer Sinus, or double gulfs like the Sabaeus Sinus, or portions of a marking not too large to permit of partitive location like the Mare Acidalium, or a canal connection like the Tacazze which prolongs the one line and not the other. In these and similar instances the two lines become capable of identification, and in such manner have been found those comprised in the following list:—

Double Canal Original Line Date of Ascertainment
Phison The Eastern 1894
Euphrates The Western 1894
Titan The Western 1896
Hiddekel The Eastern 1896
Gihon The Western 1896
Gigas The Northwestern 1896
Djihoun The Western 1901
Laestrygon The Eastern 1903
Nilokeras I and II The Northern 1903
Astaboras The Southern 1903
Jamuna The Eastern 1905
Ganges The Western 1905

In this list of originals the canals stand chronologically marshaled according to date of detection. The Phison and Euphrates were the first to permit of intertwin identification in 1894, while the Jamuna and Ganges were the last to be added to the column in 1905. The list is not long, though the time taken to compile it was. In the case of the Ganges and the Jamuna, for example, although suspected for some time on theoretic grounds, it was only at the opposition just passed that the fact was observationally established. In his Memoria V, Schiaparelli has a list of similar detection, and if the present list be compared with his, the two having been independently made, the concordance of the result will prove striking, corroborative as it is of both. For the necessary observations are very difficult.

Having thus realized the original by means of its superior showing, and then identified it by its position, it is suggestive to discover that the duplicate betrays its subordinate character, not only by its relative insignificance, but by its secondary position as well. The original always takes its departure from some well-marked bay, seemingly designated by nature as a departure-point, or from a caret belonging clearly to itself; the adjunct, on the other hand, leaves from some neighboring undistinguished spot, as in the case of the additional Djihoun, or makes use of a neighbor’s caret, as in the case of the second Phison and the supplementary Euphrates. In either case it plays something of the part of an afterthought; and yet the postscript when finished reads as an integral part of the letter. An example will serve to make the connection evident while leaving the character of the connection as cryptic as ever.

In the long stretch of Aerial coastline bounding the Mare Icarium, which sweeps with the curve of a foretime beach from the Hammonis Cornu to the tip of the Edom Promontory, there stand halfway down its far-away seeming sea-front two little nicks or indentations. Even in poor seeing they serve to darken this part of the coast while in good definition they come out as miniature caret-like bays. They are the Portus Sigaei, and mark the spots where the Phison and the Euphrates respectively leave the coast. About four degrees apart, the eastern makes embouchure to the original Phison, the western to the original Euphrates, and each in some mysterious manner is associated not only in position but in action with the canal itself. In the single state each canal leaves the Mare from this its own caret, the Phison proceeding thence northeast down the disk, the Euphrates nearly due north, so that starting four degrees apart at the south they are forty degrees asunder at their northern termini. Clearly at these latter points they are not even neighbors, and except for the accident of close approach at their other ends have nothing in common anywhere. And yet when gemination takes place a curious thing occurs: each borrows its neighbor’s terminal as departure-point for its own duplicate canal. Having thus got its base the replica proceeds to parallel its own original canal without the least reference to the other canal whose own caret it has so cuckoo-wise appropriated. What the Phison thus does to the Euphrates, the Euphrates returns the compliment by doing to the Phison. In this manner is produced an interrelation which suggests, without necessarily being, an original community of interest; suggests it on its face and yet appears to be rather of the nature of an adaptation to subsequent purposes of a something aboriginally there.

Mouths of Euphrates and Phison.

June. 1903.

That such latter-day appropriation is the fact is clearly hinted by the behavior of another understudy of an original canal, in this case the duplicate of the Djihoun, which in consequence of the position of its original finds no neighboring embouchure already convenient to its use. The single or original Djihoun leaves the tip of the needle-pointed Margaritifer Sinus, which serves a like end to the Oxus and the Indus, both single canals. The Sinus is itself a single bay, and so large that for many degrees its shores on both sides converge smoothly to their sharp apex. Because of this probably, the coast in the immediate neighborhood is without canal connection, no canal being known along either side till one reaches the Hydraotes at the Aromaticum Promontorium, which marks the western limit of the gulf. The consequence is that when the Djihoun doubles, the duplicate canal, not having any terminus ready to its hand, has to make one for itself by simply running into the Margaritifer Sinus, some distance up its eastern side. It thus advertises its adjunctival character, and at the same time the general fact that a neighbor’s terminus, though used from preference, when convenient, is not an essential in the process. Gemination occurs of its own initiative, but is conditioned by convenience.

Whether one canal shows thus to the exclusion of the other, or whether both stand so confused as not to be told apart, the fact remains that the double is not always recognizable as such. If we turn to the list of the doubles on page 222, we shall note that the same canals were not always seen in the dual condition at successive oppositions. Some, indeed, are so emphatically of the habit as to appear year after year in a paired state, but others are not so constant to their possibilities. Now, when it is remembered that at different oppositions we view Mars at diverse seasons of its tropical year, we see that this means that the phenomenon is seasonal; and furthermore that its exhibition depends upon the canal’s position. Gemination, like the showing or non-showing of the single canal, is conditioned by the place of the canal upon the planet.

III

Turning from such generic characteristics to more specific traits, the first thing to strike an attentive observer is that the doubles differ in width; that they are not mensurably alike in the property they hold in common of being paired. In some the twin lines are obviously farther apart than in others, and the relation persists however repeated the observations. Of two doubles the one will always surpass its fellow. This contrasted individuality first struck me in the Phison and the Euphrates; and from the first moment at which these doubles showed as such. The Phison pair seemed perceptibly the narrower of the two. A like distinction was evident at the next opposition and the next; in fact, at every succeeding one to the present day. Nor was the recognition of the fact confined to me. If we turn to Schiaparelli’s Memoriae we shall find that that master had registered the same idiomatic width for the two canals from first to last throughout his long series of records. The observation thus made proved to apply to each and all of these curious twins.

Diversity in width for different doubles appears plainly in drawings where more than one double is depicted. As an example, two drawings are here given in the text, made, the one on July 13, 1905, ?15°, and the other on July 20, ?313°. In them the Phison, Euphrates, Djihoun, and Thoth appear contrasted as unmistakably as either of them does with the single canals apparent at the same time. That this drawing is typical is borne out by all the best measures of the several doubles as seen at successive oppositions, and marshaled in the subjoined list. How truly individual the quality is stands proved by the relative values in different years which are even more accordant than the absolute ones.

The canals were:—

Width
1903 1905 Mean
1. Phison 3.5 3.4 3.4
2. Euphrates 4.0 4.2 4.1
3. *Protonilus 2.8 2.0 2.4
4. Deuteronilus 2.2 2.4 2.3
5. Pierius 2.5 2.5
6. Callirrhoe 2.5 *2.1 2.3
7. *Hiddekel 3.8 4.9 4.3
8. *Gihon 3.9 4.9 4.4
9. Djihoun 2.0 1.9 1.9
10. Sitacus 3.8 *3.3 3.6
11. Jamuna 4.5 4.5
12. Ganges 5.0 5.2 5.1
13. Nilokeras I and II 11.0 11.7 11.3
14. Nilokeras I 2.3 2.3
15. Gigas 3.5 3.5
16. Laestrygon 2.2 2.2
17. Cerberus N. 4.0 4.0
18. Cerberus S. 4.0 4.0
19. Cyclops 2.9 *2.2 2.6
20. Nar 2.6 2.0 2.3
21. Fretum Anian 2.8 2.8
22. Aethiops 3.3 3.3
23. Eunostos 2.8 2.8
24. Lethes 2.9 2.9
25. Marsias 3.2 3.2
26. Hyblaeus 3.0 3.0
27. Amenthes 3.2 3.5 3.3
28. Thoth 2.8 2.3 2.5
29. Nepenthes 2.8 2.3 2.5
30. Triton 2.7 *2.3 2.5
31. Pyramus 2.9 *2.0 2.5
32. Astaboras S. 3.2 3.1 3.1
33. Tithonius 2.6 2.2 2.4
34. Vexillum 3.5 2.9 3.2
35. Tartarus 2.7 2.7

* Poor.

Here we have widths ranging from eleven degrees to two. The widths given are those when the canal was at or sufficiently near its full strength, and are measured from the centres of the constituents. We notice two points: the agreement of the same canal with itself and its systematic disagreement with others. But what is especially to the point, if we compare the values found at successive oppositions, we find that for different canals the values agree in their difference. This shows that each of these values is, in most cases if not in all, a norm for that particular canal; a value distinctive of it and to which it either absolutely or relatively conforms. In other words, the width of the gemination is a personal peculiarity of the particular canal, as much an idiosyncrasy of it as its position on the planet.

Two general classes may be distinguished; those up to about five degrees in width apart and those above this figure. Whether such very widely separated lines as go to make up the second class, such as the Nilokeras I and II, constitutes a double is a debatable point. Schiaparelli thought they did, and so classed them. To me it did not at first occur so to consider them, and in some instances, such as the Helicon I and II, later observations seem to justify the omission. With the Nilokeras I and II the outcome seems the other way. The reasons for distrust of a physical relation between the constituents is not so much the distance separating them, nor any lack of parallelism, as the self-sufficient manner in which they show alone. Even this, however, tends to be recognized in the narrower pairs as they come to be better seen. It may be that width alone is wholly competent to selective showing. For the farther apart two lines are on the planet, the more opportunity is afforded the air waves to disclose the one without the other, a relative revelation which is constantly happening to detail in different parts of the disk. As long as any doubt exists of a physical community of interest, it seems best to distinguish such possibly merely parallel canals by suffixed numerals.

Of this class of doubles is the Nilokeras I and II. So wide is it that Mr. Lampland succeeded in photographing it as such, the two constituents showing well separated, and if it prove a true double it will be the first Martian double to leave its impress on a sensitive plate. Although separated by four hundred miles of territory, the two lines are parallel so far as observation can detect, which, of course, is not so very easy with the lines so far apart. In the country between one crosswise canal certainly lies, the Phryxus, and much shading thus far unaccounted for. Recent discoveries, however, point to the cause of such shading as lines imperfectly seen. For in some cases the lines have actually disclosed themselves, and warrant us in believing that it is only imperfect seeing that keeps the others hid. Of the pair the Nilokeras I is itself double, curiously reproducing what sometimes is seen in the case of double stars, one of whose components turns out to be itself a binary. The second line of the Nilokeras I lies close to its primary on the north, and was on the only occasion of its detection the merest of gossamers, while the Nilokeras I itself stood out strong and dark. Thus do these Martian details increase and multiply in intricacy the better the seeing brings them out.

In the case of the other doubles, the doubles proper so to speak, there is every indication of a physical bond between the pair. What that bond may be is another matter and seems to be of different divulging, according to the particular instance. At one end of the subject, both as the widest of these doubles and one of the most important, stands the Ganges. The components of the canal are 5°.1 apart. This great width, joined to the fact of scant extension, gives the canal a stocky aspect, its breadth being but one sixth of its length. Its width draws attention to it while the phenomena it exhibits intrigue curiosity.

As early as the first opposition of my observations in 1894, the canal, as it underwent the process of doubling, showed phases of peculiarity. It was first caught by me as a double over toward the terminator, or fading edge of the disk; then as it was brought nearer the centre by the gaining upon the longitudes, showed as a broad swath of shading of a width apparently equal to any it later exhibited. In this appearance it continued for some months, and then in October began to show a clarification toward the centre. Once started, the lightening of its midway advanced till at last, on November 13, it stood out an unmistakable double, the two lines standing where the edges of the swath had previously been. Had the observations here been all that one could wish, the method of gemination would have been certain and of great interest. Unfortunately, the observations left much to be desired, and those repeated in 1896-1897 and 1901 were of like doubtfulness. A period of swarthy confusion preceded the plainly dual state, but whether the double simply clarified or widened as well it was not possible to assure one’s self. That the canal exhibited plainly the effects of seasonal development was as unmistakable as the steps themselves were open to ambiguity. In 1903 the canal was at its minimum and hardly to be made out. It seemed then to show an actual change in width coincident with alteration of visibility. But this, too, could not be predicated with certainty. It was also surmisable that the westernmost line was the one from which the development proceeded.

In 1905 much more was made out about it, training in the subject and increased proximity of the planet contributing to the result. It now became clear to me that the canal did develop from the western side; for the western edge made a dark line of definite boundary from which shading proceeded to the eastern side, where it faded almost imperceptibly off with no defined line to mark its limit. That this shading gradually darkened was evident, but that when it could be seen at all it extended to the extreme limit of the eventual double, restricted the character if not the fact of an actual widening. At this opposition, too, the canal passed through its period of minimum visibility and was then seen, whenever it could be caught, as a confused swath of full width. In the case of this canal, then, a widening in the sense of a bodily separation of two lines seems inadmissible. On the other hand, the gradual darkening of the swath, and especially the advance of the darkening from the western side, points to an interesting process there taking place.

Peculiar development of the Ganges.

At the opposite end of the series stands the Djihoun. As the Ganges is the widest of the instantly impressive doubles, so the Djihoun is the narrowest the eye has so far been able to make out. Only two fifths of the width of the Ganges pair, this slender double is very nearly at the limit of resolvability. So well proportioned are its lines to the space between them, however, that in ease of recognition it surpasses many wider pairs. In form, too, it is distinctive, turning by a graceful curve the trend of the Margaritifer Sinus into the Lucus Ismenius. With its fundamental branch—the northern of the two—it joins what is evidently the main line of the Protonilus—also the northern one—to the Margaritifer Sinus’s tip.

Djihoun, the narrowest double.

It differs from the Ganges in some other important particulars besides width. In its case no band of shading distinguishes it at any time. It has always been two lines whenever it has been seen other than as a single penciling; the only confusion about it being evidently our own atmosphere’s affair. These two lines, furthermore, have showed, within the errors of observation, always the same distance apart. So that not only no change of intercommunication between the lines but no change in their places apparently occurs.

Between these extremes in width, two hundred miles more or less for the Ganges and seventy-five miles for the Djihoun, the distance parting the pairs of most of the double canals lies. From 3° to 3°.2 on the planet may be taken as that of the average; the degrees denoting latitudinal ones on the surface of Mars, the length of which is equal to thirty-seven of our English statute miles.

Most of the canals conform apparently to the type of the Djihoun rather than to that of the Ganges. Careful consideration of them fails to find any increase or decrease of distance, between the pairs of the same canal at different times, which cannot be referred to errors inevitable to observation of such minute detail. In short, the double is made by the addition of a second line in a particular position and not by a growth out to it of a line coincident to begin with with the first.

I have said that the average width between the two lines of the doubles was about 3°. It must not be supposed that this average width denotes anything more than an average; or, in other words, that it denotes anything in the nature of a norm. The remark is important in view of a suggestion which I have heard made that we have here a system based on fundamental Martian units, in which, or in multiples of which, the dimensions of the canals are implicitly expressed. Such, however, does not seem to be the case. In some instances, indeed, we have certain evidence to the contrary and that the width of the double is conditioned solely by antecedent place. The Phison and Euphrates offer a case in point. These two important arteries in duplicate leave, as we saw, from two carets in the Mare Icarium, the Portus Sigaei, held in common tenancy by both. Each pair then proceeds down the disk inclined at its own particular angle to the meridian in order to reach by a great circle course a certain spot; the Pseboas Lucus in one case, the Luci Ismenii in the other. As one of these angles is thirty-five degrees while the other is only three, they must, from the circumstances of their setting out, have not only different widths, but widths determinately different in advance, since each is, roughly speaking, foreshortened by the degree of divergence from the meridian. The one, therefore, must be about four degrees to the other’s something less than three and a half. This is what they actually are as determined by measurement from observation. That the calculated value agrees with that found from observation helps certify to a community of starting-points, but it completely does away with comprehensive design in the question of their widths. For if the one were so settled, the other could not be.

Indeed, the next example seems to deny it to both. This example occurs, too, not far away from the scene of the first, in the twin bays of the Sabaeus Sinus, from which depart, mutatis mutandis, the double Hiddekel and the two Gihon. These twin gulfs bear so little imprint of being other than natural formations, that they have been universally and very likely quite rightly taken for such ever since Dawes discovered them in 1859, long before things like canals were dreamed of. It is strange that when the Hiddekel and the Gihon were found by me to be double in 1897, with a branch of both leading from each bay, the connection between the sceptically scouted doubles and the thoroughly believed-in bays should have been apparent. For to link a ghost to materiality, if it does not discredit the materiality, serves to substantialize the ghost. Furthermore, it shows that in this case neither the one double nor the other can have had its width engineered on any preconceived scale, unless the twin bays be themselves so accounted for. So that it seems useless to seek for cryptic standards in the canals or to think to find them a measure of value from the fact of their being a medium of exchange.

The Sabaeus Sinus, embouchure for the double Hiddekel and Gihon.

A third instance of the same thing in the case of the Ganges and the Jamuna was proved at the last opposition after having long been suspected without my being able to make sure of it. These instances, taken in connection with the wide range of values in the widths presented by different canals, serve to show that the distance between the twin lines is an individual characteristic of the particular canal, and further to point to its cause, in some cases certainly and possibly in all, as topographical. The duplicate line makes a convenience of a neighbor, and suits its distance from its fellow to friendly feasibility. To cut a ‘canal’ to conform to the country seems logical if not obligatory, and quite in keeping with the nomenclature of the subject; but here the starting-point appears to be the only thing considered—the canal once safely launched being left to shift, or rather not shift, for itself.

IV

Topography thus introduced to our notice for its effect on the breadth of the doubles proves upon inspection to be of extended application to the whole subject. Examined for position these canals turn out to have something to say for themselves bearing on the question of their origin and office.

With regard to position, probably the first query to suggest itself to an investigator to ask is of the direction in which they run. Is there a preponderance manifest in them for one direction over another? Do they show an inclination to the vertical, to the horizontal, or to some tilt between? To answer this we may box the compass, and taking the four cardinal points with the twelve next most important points between for sectional division segregate the doubles according to their individual trend. As we have no means of determining in which sense any direction is to be taken,—if indeed it is not to be taken alternately in each,—we get eight compartments into one or the other of which all the doubles must fall. This they do in the following manner:—

S. & N., Laestrygon, Fretum Anian, Aethiops, Amenthes, Titan, Dis, Is 7
S. S. E. & N. N. W., Gihon, Ganges, Tithonius, Euphrates, Adamas 5
S. E. & N. W., Eunostos, Triton, Tartarus, Naarmalcha 4
E. S. E. & W. N. W., Astaboras, Typhon, Pierius 3
E. & W., Nar, Protonilus, *Propontis, Nectar, Cocytus, Chaos 6
E. N. E. & W. S. W. Deuteronilus, Callirrhoe, Cerberus N., Cerberus S., Sitacus, Erebus 6
N. E. & S. W., Djihoun, *Nilokeras I & II, Avernus, Nepenthes, Gigas, Alander, Polyphemus, Gelbes, Marsias, Pyramus, Nilokeras I, Asopus 12
N. N. E. & S. S. W., Jamuna, Phison, Hyblaeus, Cyclops, Lethes, Thoth, Vexillum, Hiddekel 8
51

* Wide canals.† Northern hemisphere exclusively.‡ Southern hemisphere exclusively.

No conclusively marked preponderance for one direction over another manifests itself by this partitionment. Nevertheless, a certain trend to the east of north, as against the west of north, is discernible. More than twice as many doubles run northeast and southwest or within forty-five degrees of this as do similarly northwest and southeast, there being twelve of the latter and twenty-six of the former. That this seems to mean something the nearly equal pairing of quadrantal points goes to show. Thus:—

N. & S. and E. & W. inclined canals number 7 + 6 = 13
N. N. E. & S. S. W. and E. S. E. & W. N. W. inclined canals number 8 + 3 = 11
N. E. & S. W. and S. E. & N. W. inclined canals number 12 + 4 = 16
E. N. E. & W. S. W. and N. N. W. & S. S. E. inclined canals number 6 + 5 = 11
33 18 51

a fairly equable division in direction. A trend to the westward would be given a particle descending from the north to the equator by the planet’s rotation, thus turning it southwesterly; and one to the west to a particle travelling equatorwards from the south, turning it northwesterly. As the doubles lie in the northern hemisphere, either in whole or part, to the extent of 93%, this might account for the preponderating tilt to the east of north and west of south exhibited by them. It would correspond with the lines of flow.

To see whether this be so we will take only those double canals that lie exclusively in the northern and southern hemispheres respectively, and note those in the former that trend to the west of south as against those that run to the east of it, and vice versa in the southern. In the northern the proportion of the westerly to the easterly ones is 17 to 4; in the southern, 1 to 0 the other way.

Of those whose course is common to both hemispheres we find for the ratio of the southwesterly to the southeasterly 8 to 7. But the proportion of the course of these canals in the two hemispheres is on the side of this same ratio.

From their direction we now pass to consideration of their distribution in longitude. It appears that some meridians are more favored than others. The hemisphere which has the Syrtis Major for centre is more prolific in them than its antipodes. From longitude 80° to 200° there are ten doubles, from 200° to 320° twenty-four, and from 320° to 80° seventeen; or, roughly, in the proportion of 2, 5, and 3. That this distribution means anything by itself is doubtful; it is much more likely to be a general topographical consequence of their distribution in another direction, which proves to be highly significant and which we shall now expose—that of latitude.

If we separate the surface into zones, each ten degrees wide, and count the doubles found traversing in whole or part the several zones, we find the following arrangement:—

Double Canals of Mars arranged according to Latitude At
Opposition
of 1903 Alone
At All
Oppositions
so far
observed
at
Flagstaff
Between30° S.and20°S. Tithonius, Nectar, Laestrygon 2 3
Between20°S.and10°S. Jamuna, Ganges, Gigas, Laestrygon, Cyclops, Titan, Tartarus, Polyphemus, Tithonius 7 9
Between 10°S.and0° Jamuna, Ganges, Gigas, Laestrygon, Cyclops,Cerberus S, Aethiops, Lethes, Amenthes, Triton, Phison, Euphrates, Titan, Tartarus, Adamas, Typhon, Vexillum, Asopus, Naarmalcha, Polyphemus 15 20
Between 0°and10°N. Gihon, Djihoun, Jamuna, Ganges, Gigas, Laestrygon, Cerberus N, Cyclops, Cerberus S, Eunostos, Aethiops, Lethes, Amenthes, Triton, Nepenthes, Phison, Euphrates, Sitacus, Hiddekel, Tartarus, Adamas, Asopus, Typhon, Vexillum, Cocytus, Is, Avernus N, Naarmalcha, Polyphemus 21 29
Between10°N.and20°N. Gihon, Djihoun, Jamuna, Nilokeras I and II[4], Nilokeras I, Ganges, Gigas, Eunostos, Aethiops, Lethes, Amenthes, Thoth, Astaboras, Phison, Sitacus, Euphrates, Hiddekel, Adamas, Asopus, Gelbes, Avernus N, Erebus, Naarmalcha, Vexillum, Is, Dis 18 26
Between 20°N.and30°N. Gihon, Djihoun, Jamuna, Nilokeras I & II,[4] Nilokeras I, Alander, Hyblaeus, Lethes, Amenthes, Thoth, Sitacus, Astaboras, Vexillum, Phison, Euphrates, Hiddekel, Adamas, Eunostos, Aethiops, Gelbes, Avernus N, Naarmalcha, Is 17 23
Between30°N.and40°N. Deuteronilus, Alander, Nar, Marsias, Fretum Anian, Amenthes, Thoth, Vexillum, Phison, Euphrates, Hiddekel, Adamas, Eunostos, Djihoun, Gihon, Nilokeras I, Chaos, Gelbes, Aethiops, Naarmalcha 12 20
Between40°N.and50°N. Fretum Anian, Pyramus, Protonilus, Propontis[4] 3 4
Between 50°N.and60°&nbpp;N. Callirrhoe, Fretum Anian, Pierius 3 3
Between60°N.and63°N. Pierius, Callirrhoe 2 2

From this tabulating of them it is apparent that the doubles are practically confined to the zones within forty degrees of the equator. Only 7% of them straggle farther north than this, while above 63° north latitude and 35° south latitude there are none. Such a distribution is not in proportion to the areas of the zones, which though diminishing toward the poles do so at no such rate. The surface included between the equator and 40° of latitude is 65% of the hemisphere, whereas the fraction of the number of doubles found there is 93%. The doubles are, then, an equatorial feature of the planet, confined to the tropic and temperate belts.

To perceive the tropical character of the doubles in another way we have but to consider the zonal distribution of the single canals. Unlike the former the latter do not thin out as one advances toward the poles; since in the arctic regions single canals bemesh the surface as meticulously as elsewhere. It is only that they there replace the doubles; or, not to put the cart before the horse, it is the doubles that in part replace the singles in the tropics. And that this arrangement has something physical behind it by way of cause is curiously shown by two canals, the Arnon and the Kison, which are neither of the one kind nor yet the other, but a cross between the two. For the Arnon and the Kison are convergent doubles; the two lines of the Kison leaving a common point at the edge of the polar cap and separating as they travel south, while the two Arnon take up and continue the divergence, connecting at last with the parallel pair of the Euphrates. These canals thus make transition between the true doubles and the true singles, and may be looked upon as endowed with the potentialities of both. From their association with the double Euphrates, it is clear that the transition between the two forms is not only formal but physical, and that the stopping of the dual condition at the fortieth parallel is not the outcome of chance.

It may occur to the thoughtful that the doubles appear confined to the more tropical portions of the planet because of a better presentation of those zones, the reader supposing the planet to be seen axised perpendicularly to the plane of sight, as geographies represent the earth’s globe. The supposition, however, is erroneous. We sometimes see the planet so, but more often not. Such is the tilt of the Martian axis to the plane of the Martian ecliptic that the different zones are rarely seen on an even keel, so to speak, their aspects shifting totally from one opposition to another. What shows in mid-disk on one occasion may be forty-eight degrees removed from it at another, a distance amounting to three-quarters of the way from apparent equator to apparent pole.

Thus the double canals are for some intrinsic reason equatorial features of the planet as opposed to polar ones. And this not simply because of greater space there. Duality is a result of conditions intrinsic to the several localities. What the cause may be is related to the character of the things themselves, which we shall later consider. For the moment we may note that the fact disposes quietly of the diplopic theory of their manufacture. For, for diplopic doubles to show such respect for the equator would betoken a courtesy in them to be commended of Sydney Smith.

But this is not their only geographic bias. In addition to not being partial to the poles, the double canals show a certain exclusiveness toward the dark areas generally. Not only do they avoid the arctic and antarctic zones entirely, but they largely shun the blue-green regions. In these but two suspicions of doubles occur, in the Aonium Sinus, although single canals there are as numerous as anywhere else on the planet.

Nevertheless, although they avoid running through them, they run from them in a manner that is marked. Proceeding from the great diaphragm are no less than 28 out of the 53 doubles. Connecting directly with these are 17 more; while the remaining 8 are also associated through the intermediarism of dark areas, the Solis Lacus and the Trivium.

In like relation to dark regions, they are limited on the north by the Mare Acidalium, the Propontis, the Wedge of Casius and their interconnecting bands, the Pierius, Callirrhoe, Helicon. In this manner do they form a broad girdle round the planet’s waist, leaving the polar extremities bare.


Very wide and possibly not of the same class.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page