CHAPTER XII TERRAQUEOUSNESS AND TERRESTRIALITY

Previous

With the vanishing of its seas we get for the first time solid ground on which to build our Martian physiography. The change in venue from oceans to land has produced a complete alteration in our judgment of the present state of the planet. It destroys the analogy which was supposed to exist between Mars and our earth, and by abolishing the actuality of oceans there, seems, metaphorically, to put us at first all the more at sea in our attempt to understand the planet. But looked at more carefully, it turns out to explain much that was obscure, and in so doing gives us at once a wider view of the history of planetary evolution.

The trait concerned is cosmic. Study of the several planets of our solar system, notably the Earth, Moon, and Mars, reveals tolerably legibly an interesting phase of a planet’s career, which apparently must happen to all such bodies, and evidently has happened or is happening to these three: the transition of its surface from a terraqueous to a purely terrestrial condition. The terraqueous state is well exhibited by our own earth at the moment, where lands and oceans share the surface between them. The terrestrial is exemplified by both the Moon and Mars, on whose surfaces no bodies of water at present exist. That the one state passes by process of development into the other I shall now give my reasons for believing.

In the first place the appearance of the dark markings both on the Moon and Mars hints that though seas no longer, they were seas once upon a time. On the moon, not only does their shape suggest this previous condition, but the smooth and even look of their surfaces adds to the cogency of the inference. More important, however, than either of these characteristics, and confirmatory of both, is the fact that the great tracts in question seem to lie below the level of the corrugated surface, which is thickly strewn with volcanic cones. Their level and their levelness fay in explanation into one another. The first makes possible the former presence of water; the second speaks of its effect. For their flat character hints that these areas were held down at the time when the other parts of the surface were being violently thrown up. That they can themselves be cooled lava flows, their extent and position seem enough to negative; to say nothing of the fact that they should in that case lie above, not below, the general level. Something, therefore, covered them during the moon’s eruptive youth and disappeared later. Such superincumbence may well have been water, under which the now great plains lay then as ocean bottoms. Deep-sea soundings in our own oceans betray an ocean floor of the same extensive sort, diversified as on the moon. To call the lunar maria seas may not be so complete a misnomer after all; but only a resurrecting in epitaph what was the truth in its day.

Only doubtfully offered here for the Moon, for Mars the inference seems more sure. Here again the dark regions not only look as they should had they had an earlier history, but they, too, seem to lie below the level of the surface round about. When they pass over the terminator they invariably show as flattenings upon it, as if a slice of the surface had been pared off. Such profile in such pass is what ground at a lower level would present. Undoubtedly a part of the seeming depression is due to relative absence of irradiation consequent upon a more sombre tint, but loss of light hardly seems capable of the whole effect. In the case of Mars, then, as with the Moon, a mistaken inference builded better than it knew, if, indeed, we should rightly consider an inference to be mistaken which on half data lands us at the right door.

From the aspects of the dark regions we are led, then, to regard Mars as having passed through that stage of existence in which the earth finds itself at the moment, the stage at which oceans and seas form a feature of its landscape and an impediment to subjugation of its surface in its entirety. What once were ocean beds have become ocean bottoms devoid of that which originally filled them.

That the process of parting with a watery envelop is an inevitable concomitant of the evolution of a planet from chaos to world, we do not have to go so far afield as Mars and the Moon for testimony. Scrutiny reveals as much in the history of our own globe. Two signposts of the past, one geologic, the other paleontologic, point unmistakably in this direction. The geologic guides us the more directly to the goal.

Study of the earth’s surface reveals the preponderating encroachment of the land upon the sea since both began to be, and demonstrates that, except for local losses, the oceans have been contracting in size from archaic times. So much is evidenced by the successive places upon which marine beds have been laid down. This suggests itself at once as a theoretic probability to one considering the matter from a cosmic standpoint, and it is therefore the more interesting and conclusive that, from an entirely different departure-point, it should have been one of the pet propositions of the late Professor Dana, who worked out conclusively the problem for North America, and published charts detailing the progressive making of that continent.

Map of North America at the close of ArchÆan time, showing approximately the areas of dry land. (From Dana’s “Manual of Geology.”)

So telling is this reclaiming by nature of land from the sea that it will be well to follow Dana a little into detail, as the details show effectively the continuity of the process acting through Æons of geologic time. At the beginning of the ArchÆan age, or, in other words, at the epoch when stratified beds were first laid down, the earth reached a turning-point in its history. Erosion, superficial and sub-aËrial, then set in to help restrict the domain of the sea. At this juncture North America consisted of a sickle of terrane inclosing Hudson’s Bay and coming down at its apex to a point not much removed from where Ottawa now stands, in about latitude 45°—a Labradorian North America only. This, the kernel of the future continent, curiously symbolized the form that continent was later to take. For its eastern edge was roughly parallel to the present Atlantic coastline, although much within and to the north of it, while its western one was similarly aligned afar off to the now Pacific slope. Besides this continent proper, the Appalachian, Rocky Mountain, Sierra Nevada, and Sierra Madre chains stood out of the ocean in long, narrow ridges of detached land, outlining in skeleton the bones of the continent that was to be. The Black Hills of Dakota and other highlands made here and there islets in the sea.

Much the same backbone-showing of continents yet to be filled out was true of Europe, Asia, and South America. In Europe the northern countries constituted all that could be called continental land. Most of Norway, Sweden, Finland, Lapland, existed then, while the northern half of Scotland, the outer Hebrides, portions of Ireland, England, France, and Germany stood out as detached islands. From this, which is a fair sample of the proportion of land then to land now over the other continents so far as they are geologically known, we turn to consider more in detail the history of North America.

By the time the Upper Silurian period came in, the Appalachian highlands there had been greatly extended and joined to the Labradorian mainland by continuous territory; otherwise, no important addition had occurred, though islands emerged in Ohio, Kentucky, and Missouri.

North America at the opening of the Upper Silurian. (From Dana’s “Manual of Geology.”)

At the commencement of the Carbonic era what are now the Middle states had begun to fill up from the north, and Newfoundland, from a small island in the Upper Silurian, had become a great promontory of Labrador, while the Eastern states region and Nova Scotia had risen into being. The movements closing Paleozoic time upheaved from low islands the Appalachian chain. The earth’s crust here crumpled by contraction upon itself; and the movement ended, as Dana says, by making dry land of the whole eastern half of the continent, along substantially its present lines.

Map of North America after the Appalachian Revolution. (From Dana’s “Manual of Geology.”)

Mesozoic time was the period of the making of the West. It was an era of deposition and coincident subsidence, when the western land had its nose just above water at one moment to be submerged the next. Though on the whole this part of the continent was emerging, the fact was that, synchronously with the sinking of the sea, much of the land from time to time sank too. The contraction which raised the Appalachian Mountains at the beginning of the period and that of the Rockies at its close overdid the necessities of the case and caused subsidence elsewhere. The southeastern portion of the continent suffered most, the West on the whole materially gaining. In the Triassic and Jurassic eras the gain was pronounced; it occurred in the Cretaceous also, but with much alternation of loss. Finally, at the close of the Cretaceous, the continent, except for a prolonged Gulf of Mexico and vast internal lakes, was substantially complete.

North America in the Cretaceous period. (From Dana’s “Manual of Geology.”)

The filling up of these lakes and the reclaiming of land from the Gulf of Mexico constituted the land-making work of Tertiary times. The extent of the lakes in the Eocene era is held to show that the general level of the mountain plateau was low and rose later. So that the gain by the land at this time was greater than the map allows to appear. By the beginning of the Quaternary epoch the continents had assumed their present general area, and since then their internal features have alone suffered change.

Map of North America, showing the parts under water in the Tertiary Era; the vertically lined is the Eocene. (From Dana’s “Manual of Geology.”)

A similar rising from the sea fell to the lot of Europe, though it has not been detailed with so much care. The skeleton of that continent was at the beginning of depositary time much what it is to-day, but a great inland sea occupied the centre of it, which, as time went on, was gradually silted in and evaporated away, notably during the Upper Silurian period.

From all this it is pretty clear that, side by side with alternating risings and sinkings of the land, there was a tolerably steady gain in the contest by which dry ground dispossessed the sea. We may, of course, credit this to a general deepening of the ocean bottoms due to crumpling of the crust, but we may also impute it to a loss of water, and that the latter is, at least for a part, in the explanation the condition of the Moon and Mars makes probable.

Paleontology has the same story of reclamation to tell as geology, and with as much certainty, though its evidence is circumstantial instead of direct and speaks for the growing importance of the land in the globe’s economy since the beginning of depositary time, and thus inferentially to its increasing extent. Fossil remains of the plants and creatures that have one after the other inhabited the earth show that the land has been steadily rising both in floral and faunal estimation as a habitat from the earliest ages to the present day. The record lies imprinted in the strata consecutively laid down, and except for gaps reads as directly on in bettering domicile as in evolutionary development.

In ArchÆan times we find no undisputed evidence of life either vegetal or animal. But beds of graphite and of limestone point to the possible existence of both. Even anthracite has been found in ArchÆan rocks in Norway and also in Rhode Island. Whether Dawson’s Eozoon Canadense be a rhizopod or a crystal, doctors of science disagree. Dana, while admitting nothing specific, deems it antecedently probable that algÆ and later microscopic fungi related to bacteria existed then, living in water well up toward the boiling-point. Indeed, it is practically certain that invertebrate life existed, because of its already well-developed character in the next era. The like antedating is inferable for the whole record of the rocks. Relatively their history is undoubtedly fairly accurate, but absolutely it must be shifted bodily backward into the next preceding era to correspond with fact not yet unearthed.

In the Lower Cambrian, when first the existence of life becomes a certainty, that life, so far as known, was wholly invertebrate and wholly marine; rhizopods (probably), sponges and corals, echinoderms, worms, brachiopods, mollusks, and crustaceans grew amid primitive seaweed and have left their houses in the shape of shells while perishing themselves. Their tracks too have thus survived. The trilobites, crustaceans somewhat resembling our horseshoe crab, were the lords of the Cambrian seas and marked the point to which organic evolution had then attained. Their aquatic character as well as their simple type is shown by their thoracic legs having each a natatory appendage.

In the next era, the Lower Silurian, the fauna and flora were still marine, although of a higher order than before, and in the Trenton period, the upper part of the era, the earliest vertebrates, fishes, come upon the scene: ganoids and possibly sharks. Nothing terrestrial of this period has yet with certainty been unearthed in America. Europe would seem to have either been more advanced then or better studied since, for there the first plant higher than a seaweed has been dug up, one of a fresh-water genus betokening the land; while in keeping with this the first insect, an hemipter, also has been disinterred. Both the geography and the life of the Eopaleozoic period Dana styles “thalassic.”

Neopaleozoic time, beginning with the Upper Silurian, marked the emergence of the continents, and following them the emergence of life from the water on to this land. In the lower beds of the Upper Silurian in America we find only the aquatic forms of previous strata, but in a higher one we come in marshes upon plants related to the equiseta or horsetails. In England land plants appear for the first time in these latest Silurian beds and in the schists of Angers have been preserved ferns. In both the old world and the new fossil fishes are found and the oldest terrestrial species of scorpions. But the great bulk of forms was still marine; corals, crinoids, brachiopods, trilobites constituting the principal inhabitants. At this time the seas were warm, having much the same temperature between 65° and 80° north as between 30° and 45°; the prevalence of a general temperate tropicality being shown by the fact that the common tropical chain corals lived in latitude 82° north.

In the Devonian era, the Old Red Sandstone, fishes grew and multiplied, increasing in size apparently through the era, and in the last period of it reaching their culminating point. These pelagic vertebrates much surpassed in structure the terrestrial population of the time, which was of a low type and consisted of invertebrates such as myriapods, spiders, scorpions, and insects; for the land was only making. In the mid-Devonian, forests of a primitive kind covered such country as there was, an amphibious land, composed of jungles and widespread marshes. Tree ferns made the bulk of the vegetation, but among them grew also cycads and yews. Mammoth may-flies flitted through the gloom of these old forests, but no vertebrate as yet had left the sea.

Following upon the Old Red Sandstone were laid down the Carbonic strata, and with the Carbonic entered upon the scene the advance scouts of an army of progress evolutionarily impelled to spy out the land—the first amphibians. They made their dÉbut in the Subcarboniferous section of the era, the oldest of the three periods into which the Carbonic is divided, crawling out of the sea to return again and leaving but footprints at first on the sands of time. In the second period, the Coal-measures proper, they ventured so far as to leave their skeletons on terra firma, or rather infirma, while their tracks there show them to have been now in great numbers. In this manner the ancestors of the oldest land inhabitants began to struggle out of the sea. In the Permian, the third and latest period of paleozoic times, we find their descendants established in their new habitat, for in it we come upon the first reptiles. Such possession marks a distinct step up in function as in fact, for while amphibians visited dry land, reptiles made it their home. The getting out of the water had now, in the case of the more evolved forms, become an accomplished fact. The reptiles were, indeed, the lowest and most generalized of their class, Rhynchocephalians, “beak-headed” species that by their teeth proclaim their marine origin and their relationship to the great amphibians that still felt undecided where to stay. Meanwhile, in Europe dragon-flies, two feet across, possessed the air; while amphibians there, as here, ancestrally preceded reptiles in occupying the land.

Mesozoic times were, par excellence, the age of monsters; for the Triassic (the New Red Sandstone), Jurassic and Cretaceous eras marked the reign of the reptiles. Great dinosaurs sleep still in the Triassic strata of the Atlantic border and in the Jurassic of the Western states, to be unearthed from time to time and be given mausolea in our museums. Gigantic they were and very literally possessed the earth. In Europe they were substantially as in America during these mesozoic eras, and showed their dominance by long survival in time as well as world-wide distribution in space; for they lived all the way from Kansas to New Zealand and from the Trias to the Upper Cretaceous. It is supposed by Professor Osborn that many of them, like the herbivorous brontosaurus, waded in marshes, not wholly unlike in habit to the modern hippopotamus. Others were land-stalking carnivores, like the megalosaurs of a little later date. Of enormous size, the largest exceeded any animal which has ever lived, the whales alone excepted; the biggest, the atlantosaurus and the brontosaurus, reaching a length of sixty feet. For all their bulk they had scant brains, just enough to enable them to feed and wallow, probably. It is interesting to note that many of the reptiles, the less adventurous, apparently reverted to the sea. For though the crocodilians existed already in the Trias, the plesiosaurians did not come in till the Middle Trias in Europe, and the sea-serpents (mosasaurus) till the Upper Cretaceous.

Though the dinosaurs dominated life in those days, higher forms, their descendants, unnoticed were gradually creeping in, eventually to supplant them. For brain was making its way unobtrusively in the earliest of the mammals, diminutive creatures at first and of the lowest type. First appearing in the Trias as something approaching the missing link between reptiles and mammals, they later developed into monotremes and marsupials, not rising in differentiation above the latter order to the end of Mesozoic times. And this both in the old world and the new. In the Jurassic, too, flying lizards and the first birds appeared, showing their pedigree in their teeth.

With Cenozoic times we come upon the first true or placental mammals with their culmination up to date in man. In the Eocene they were of a primitive type; they were also of a comprehensive one, fitted to eat anything. From this they specialized, some evolving and some on the whole devolving; the whale, for instance, taking to the water in the Eocene through the same degenerate proclivity that had characterized the sea-saurians ages before. The earth was growing colder, though still fairly warm, and with the fall in temperature the higher types of life antithetically rose, evolution gradually fitting them to cope with more advanced conditions. In this manner did the land supplant the sea as the essential feature of the earth’s surface, first, in coming into being, and then, by offering conditions fraught with greater possibilities, as the habitat of the most advanced forms of life, both plants and animals.

The possibility of advance in evolution was largely due to the fact that the land did thus supplant the sea. Spontaneous variation, the as yet unexplained primum mobile in the genesis of species, is probably to be referred to chemism and is likely later to receive its solution at the hands of that science. In the meanwhile it is evident that unless the variation obtain encouragement from the environment no advance in type occurs. Now the land offers to an organism sufficiently evolved to benefit by it, opportunities the sea does not possess. First of these, undoubtedly, is the care it enables to be given to the young. To cast one’s brood upon the waters is not the best method of insuring its bringing up. There is too much of the uncertainties of wave and current to make the process a healthy one, and even when attached to rocks and seaweed, the attachment to a mother is to be preferred. Without a period of infancy, when the young is unable to do for itself, no great development is possible. In the only striking exception, the case of the whales, dolphins, and porpoises, size has probably counted for much in the matter, while the development of the cetaceans is far behind that of the majority of land mammals.

Change of place, not in distance, but in variety, is another factor. The sea is same as a habitat, one square mile of it being much like another, except for gradually changing temperature. The land, on the other hand, from its accidented surface, presents all manner of diversity in the conditions. And the more varied the conditions to which the organism is exposed, the greater its own complexity must be to enable it to meet them.

That the terrestrial stage of planetary development is subsequent to the terraqueous one, and must of necessity succeed it if the latter ever exist on a body, follows from the loss of internal heat on the one hand and from the kinetic theory of gases on the other. To which of the two to attribute the lion’s share in the business is matter for doubt; but that both must be concerned in it we may take for certain.

So long as the internal heat suffices to keep the body fluid, the liquid itself sees to it that all interstices are filled. As the heat dissipates, the body begins to solidify, starting with the crust. For cosmic purposes it undoubtedly still remains plastic, but cracks of relatively small size are both formed and persist. Into these the surface water seeps. With continued refrigeration the crust thickens, more cracks are opened and more water given lodgment within, to the impoverishment of the seas. The process would continue till the pressure of the crust itself rendered plastic all that lay below, beyond which, of course, no fissures could be formed. How competent to swallow all the seas such earth cuticle cracks may be we ignore; for we cannot be said to know much of the process. We can only infer that to a certain extent internal absorption of surface seas must mark a stage of the evolution by which a star becomes a world and then an inert mass, one of the dark bodies of which space is full.

Of the other means we know more. We are certain that it must take place, though we are in doubt as to the amount it has already accomplished. This method of depletion is by the departure of the water in the form of gas, in consequence of the molecular motions. If we knew the temperature and the age of Mars and also the amount of atmosphere originally surrounding it, we could possibly predicate its state. Reversely, we can infer something as to age and temperature from its present condition.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page