In a paper presented to the American Academy in April, 1913, and printed in their Memoirs So much for the process of forming a planet; but what he was seeking was why the planets formed just where they did. For this purpose he worked out intricate mathematical formulae, based on those already known but more fully and exactly developed. These it is not necessary to follow, for the results may be set forth,—so far as possible in his own words. “Beyond a certain distance from the planet the commensurate-period swings no longer suffice to bridge the intervening space and the planet’s annexing power stops. This happens somewhat before a certain place is reached where three potent periodic ratios succeed each other—1:2, 2:5, 1:3. For here the distances between the periodic points is greatly increased.... “At this distance a new action sets in. Though the character of its occasioning be the same it produces a very different outcome. The greater swing of the particles at these commensurate points together with a temporary massing of some of them near it conduces to collisions and near approaches between them which must end in a certain permanent combining there. A nucleus of consolidation is thus formed. This attracts other particles to it, gaining force by what it feeds on, until out of the once diffused mass a new planet comes into being which in its turn gathers to itself the matter about it. “A new planet tends to collect here: because the annexing power of the old has here ceased while at the same time the scattered constituents to compose it are here aided to combine by the very potent commensurability perturbations of its already formed neighbor. “So soon as it has come into being another begins to be beyond it, called up in the same manner. It could not do so earlier because the most important deus ex machina in the matter, the perturbation of its predecessor, was lacking. “So the process goes on, each planet acting as a sort of elder sister in bringing up the next. “That such must have been the genesis of the several planets is evident when we consider that had each arisen of itself out of surrounding matter there would have been in celestial mechanics nothing to prevent their being situated in almost any relative positions other than the peculiar one in which they actually stand.... “It will be noticed that the several planets are not quite at the commensurate points. They are in fact all just inside them.... Suppose now a particle or planet close to the commensurable point inside it. The mean motion in consequence of the above perturbation will be permanently increased, and therefore the major axis be permanently decreased. In other words, the particle or planet will be pushed sunward. If it be still where” the effect of the commensurateness is still felt “it will suffer another push, and so on until it has reached a place where the perturbation is no longer sensible.” He then goes on to show from his formulae that if the particle were just within the outer edge of the place where the perturbation began to be effective it would also be “We thus reach from theory two conclusions: “1. All the planets were originally forced to form where the important and closely lying commensurable points 1:2, 2:5, or 1:3, and in one case 3:5, existed with their neighbors; which of these points it was being determined by the perturbations themselves. “2. Each planet was at the same time pushed somewhat sunward by perturbation.” He then calculates the mutual perturbations of the major axes of the outer planets taken in pairs and of Venus and the Earth. “From them we note that: “1. The inner planet is caeteris paribus more potent than the outer. “2. The greater the mass of the disturber and, in certain cases, the greater the excentricity of either the disturber or the disturbed the greater the effect.” As he points out, the effect of each component of the pair is masked by the simultaneous action of the other, and refers to the case of Jupiter and the asteroids, where the effect they have upon it is imperceptible, and we can see its effect upon them clearly. Thus he shows that a new planet would naturally arise near to a point where its orbit would be commensurate with that of the older one next to it. But the particular commensurate fraction in each case is not so certain. In general it would depend upon the ratio of the two pulls to each other, for if “the action of the more potent planet greatly exceeds the other’s it sweeps to itself particles farther away than Venus is smaller than the Earth, but her interior position gives her an advantage more than enough to make up for this, with the result that the pulls of the two are more nearly equal than those of any other pair, the commensurate ratio being 3:5. The next nearest equality of pull is between Uranus and Neptune, where the commensurate ratio is 1:2; the next between Jupiter and Saturn, and Venus and Mercury, where it is 2:5; the least equality being between Saturn and Uranus, where it is only 1:3. Mars seems exceptional for, as Percival says, from the mutual pulls we should expect its ratio with the Earth to be 1:3 instead of 1:2 as it is, and he suggests as the explanation, “the continued action of the gigantic Jupiter in this territory, or it may be that a second origin of condensation started with the Earth while Jupiter fashioned the outer planets.” He brings the Memoir to an end with the following summary: “From the foregoing some interesting deductions are possible: “1. The planets grew out of scattered material. For had they arisen from already more or less complete nuclei these could not have borne to one another the general comensurate relation of mean motions existent to-day. “2. Each brought the next one into being by the perturbation it induced in the scattered material at a definite distance from it. “3. Jupiter was the starting point, certainly as regards the major planets; and is the only one among them that could have had a nucleus at the start, though that, too, may equally have been lacking. “4. After this was formed Saturn, then Uranus, and then Neptune.” (This he shows from the densities of these planets.) “5. The asteroids point unmistakably to such a genesis, missed in the making. “6. The inner planets betray inter se the action of the same law, and dovetail into the major ones through the 2:5 relation between Mars and the asteroids. “We thus close with the law we enunciated: Each planet has formed the next in the series at one of the adjacent commensurable-period points, corresponding to 1:2, 2:5, 1:3, and in one instance 3:5, of its mean motion, each then displacing the other slightly sunward, thus making of the solar system an articulated whole, an inorganic organism, which not only evolved but evolved in a definite order, the steps of which celestial mechanics enables us to retrace. “The above planetary law may perhaps be likened to Mendelief’s law for the elements. It, too, admits of prediction. Thus in conclusion I venture to forecast that when the nearest trans-Neptunian planet is detected it will be found to have a major axis of very approximately 47.5 astronomical units, and from its position a mass comparable with that of Neptune, though probably less; while, if it follows a feature of the satellite systems which I have pointed out elsewhere, its excentricity should be considerable, with an inclination to match.” The last paragraph we shall have reason to recall again. This paper on the “Origin of the Planets” has been called the most speculative of Percival’s astronomical studies, and so it is; but it fascinated him, and is interesting not more in itself, than as an illustration of the inquiring and imaginative trend of his mind and of the ease with which intricate mathematical work came to the aid of an idea. Meanwhile his reputation was growing in Europe. At the end of 1909 he is asked to send to the German National Museum in Munich some transparencies of his fundamental work on Mars and other planets with Dr. Slipher’s star spectra, and Dr. Max Wolf of Heidelberg who writes the letter adds: “I believe there is no American astronomer, except yours, [sic] invited till now to do so.” A year later the firm in Jena which had just published a translation of his “Soul of the Far East” wants to do the same for “Mars as the Abode of Life.” In August 1914 he writes to authorize a second French edition of this last book which had been published with the title “Evolution des Mondes.” Every other year, he took a vacation of a few weeks in Europe to visit his astronomic friends, and to speak at their societies. That was destined to be his last voyage, for although he seemed well again he was working above his strength. His time in these years was divided between Flagstaff, where his days and nights were spent in observing and calculating, and Boston, where the alternative was between calculations and business. He was always busy and when one summer he hired a house at Marblehead near to his cousins Mr. and Mrs. Guy Lowell he would frequently drop in to see them; and was charming when he did so; but could not spare the time to take a meal there, and never stayed more than five minutes. |