Black Bryony (Tamus communis L.). The stem and foliage of Black Bryony are apparently harmless, being browsed by sheep and goats with impunity, but the scarlet fruits are decidedly poisonous and the starchy root is acrid and purgative. Toxic Principle. This is probably the glucoside Bryonin, which occurs in Bryonia dioica (p. 35). Symptoms. Cornevin, in citing experiments on animals, states that small quantities of the fruits cause uneasiness, somnolence, and difficult locomotion. Larger quantities cause vomiting, intestinal pains, and paralysis of hind quarters. Death is rapid. MÜller, however, remarks that paralysis of the hind quarters and convulsions may result from small quantities, large quantities causing in addition inflammation of the stomach and intestines. LILIACEÆ.Herb Paris (Paris quadrifolia L.). Owing to its habitat—damp woods—it is unlikely that stock will eat this plant, but it may be possible where fields border open woods in which it grows. No records of stock poisoning have been met with, but cases of poisoning in man are recorded, one due to eating a considerable number (30 to 40) of the berries, and symptoms of poisoning in a child four years of age who had eaten a few berries. In smaller quantities they are very poisonous to poultry. All parts are stated to be poisonous, especially the berries. Fatal poisonings are nil, or very rare if recorded. Toxic Principle. Walz isolated the glucoside Paridin; and Esser states that the toxic property is due to a Saponin,—the bitter irritant glucoside Paristyphnin (C38H64O18), which is convertible into Paridin (C16H28O7 + 2H2O) and sugar. Lily-of-the-Valley (Convallaria majalis, L.). This beautiful plant is only likely to induce poisoning of domestic animals at very rare intervals, as it occurs wild in only a few woods from Moray southwards, being, however, abundant in some districts. All parts are stated to be poisonous, especially the flowers. It has an acrid, bitter taste. Few cases of poisoning are recorded. Sheep and goats are believed to eat the leaves with impunity. The extract is so poisonous that four drops injected into the blood stream sufficed to kill a dog in ten minutes (Cornevin). The leaves have been known to kill geese and fowls. Toxic Principle. All parts of the plant contain the bitter poisonous glucoside Convallamarin (C23H44O12), the glucoside Paridin (C16H28O7 + 2H2O), and the glucoside Convallarin (C34H62O11)—the first a dangerous purgative, and the last a cardiac poison resembling Digitalis. Convallamarin is a very poisonous crystalline substance, with at first a bitter and afterwards a sweetish taste. Symptoms. The action of this plant on the animal organism is not yet clearly known, but it is stated to have marked emetic and purgative action. Taken in moderate quantities a period of retardation of the heart and lung action is followed by a period in which the heart action is intermittent, and there are stoppages in respiration, and vomiting. Taken in large quantities, the first of these periods is extremely short, the pulse soon becomes rapid and small, respiration is quickened, and the heart action ceases (Cornevin). Pott observes that the leaves cause stupefaction, convulsions, and death after a few hours in the case of geese. He cites a case in which ten fowls ate the leaves and nine died. Meadow Saffron (Colchicum autumnale L.). The Meadow Saffron, Autumn Crocus, or Naked Ladies, as it is variously named, occurs in 4. Staffordshire Weekly Sentinel, Aug. 21st, 1909. The toxic principle is cumulative, that is, small quantities of the plant eaten regularly may result in poisoning, owing to the poison being slowly eliminated by the kidneys. Indeed, cases have been recorded in which the poison has been secreted and eliminated in the milk of cows and so has caused poisoning of both calves and infants. Toxic Principle. Meadow Saffron contains in all parts the acrid, poisonous alkaloid Colchicine (C22H25NO6) stated by Esser to occur to the extent of 0·2 per cent. in the corms, 0·4 to 0·6 per cent. in the seed coats, but only traces in the leaves. Hertel obtained 0·38 to 0·41 per cent. of Symptoms. After small, but not fatal doses there is loss of appetite, suppression of rumination, salivation, light colic, diarrhoea and voiding of small quantities of urine. Blood has been observed in the milk of affected cows. Larger and fatal quantities cause total loss of appetite and sensation, stupefaction, loss of consciousness, dilatation of pupils, unsteady gait, and even paralysis of limbs, sweating, severe colic, and bloody diarrhoea, strangury and bloody urination; rapid, small, and finally imperceptible pulse, laboured breathing; and death in from one to three days. Where recovery takes place it is very slow (12 to 14 days according to Cornevin). Cornevin draws attention to the fact that, as the symptoms do not occur until several hours after ingestion, by which time the poison must be partly distributed, the poison is very dangerous and difficult to combat, attempts at vomiting or evacuation, whether spontaneous or caused therapeutically, having little chance of ridding the organism of the poison. Cornevin’s account of the symptoms shows that at first there is abundant salivation, with constriction of the throat, and dysphagia; then nausea with vomiting; colic; abundant, repeated and diarrhoeic evacuations, which at the end become dysenteric with painful tenesmus; abundant urination; short, accelerated and difficult respiration, with incoordination in the thoracic and abdominal movements. The circulatory functions are modified only in fatal cases, when the pulse is small and intermittent towards the end. There is finally a notable drop in temperature, shown by the coldness of the skin. Death occurs in from 16 hours to 6 days after ingestion. During the last few hours the animals are stretched at full length and are incapable of getting up. There may be prolapsus of the rectum; the eye is deeply sunk; sensibility is deadened and death is due to stoppage of respiration. In the horse, there are spasmodic movements of the hind-quarters and excessive excitement of the urinary genital organs. In cattle there is cessation of rumination, grinding of teeth, dryness of muzzle, ptyalism, groaning, painful colic, dysentery, deeply sunken and watery eyes, anus wide open, and evacuation of very foetid, blackish, glareous matter round the excrement. In cows there may be suppression of milk, and abortion. In the pig there is abundant salivation and vomiting, and GRAMINEÆ.Darnel (Lolium temulentum L.). The grass known as Darnel, of the same genus as rye-grass, has been recognized for centuries as a harmful species, and it is considered by some authorities that it is really the tares of Scripture which the enemy sowed among the wheat. Its effect on eyesight was known to the ancients 5. E.g. Ovid says “Let the fields be clear of darnel that weakens the eyes.” In Plautus’ comedy, The Braggart Soldier, one servant says to another, “’Tis a wonder that you are in the habit of feeding on darnel with wheat at so low a price.” “Why so?” “Because you are so dim of sight.” [Agric. Jour. Union of S. Africa, Jan. 1914, p. 82.] “Want ye corn for bread? I think the Duke of Burgundy will fast Before he’ll buy again at such a rate: ’Twas full of darnel: Do you like the taste?” —I Henry VI, Act III, Sc. 2. Its effect when mixed with flour was also referred to by Gerarde (1597): “The new bread wherein Darnell is, eaten hot, causeth drunkenness; in like manner doth beere or ale wherein the seede is fallen, or put into the mault.” Before the seeding stage is reached Darnel seems to be quite suitable as a food for stock, only the seed or grain being poisonous, and this not invariably so. The chief danger perhaps is that the grain may not be thoroughly removed from cereal grains, and may thus find its way into bread or cereal stock foods. Though it has caused many cases of human poisoning, fatal results seem to be rare: Dr. Taylor could record no fatal case up to 1859. Darnel mixed with barley caused the poisoning of pigs (Veterinarian, 1842). Johnson and Sowerby (1861) state that Darnel has in several cases proved fatal to horses and sheep. The same authorities quote a case in which 80 inmates of Sheffield Workhouse were attacked by violent vomiting and purging from the use of oatmeal containing Darnel. At the Veterinary School at Lyons a horse was
He found pigs very little affected. As regards man 30 grammes (1 oz.) of the flour appear to be about the most that can be taken without showing dangerous symptoms. The presence of Darnel flour in flour of the cereal grains may be determined by an examination of the starch granules, which are given by Cornevin as only 5 to 8µ; in diameter (compared with 25 to 4µ for rye), simple in general, but sometimes in groups of 2 to even 5, polyhedral or partly rounded, with a nucleus or fusiform nucleal cavity, and readily coloured blue with iodine; they resemble those of maize but are only about one-eighth the size. Toxic Principle. The grains only are harmful, and contain the narcotic alkaloid Temuline (C7H12N2O), which Hofmeister showed to be a strong nerve poison, and which is said to occur to the extent of 0·08 per cent. in the seeds. Other authorities impute the toxic property to Loliine, while Smith states that the toxic principle is Picrotoxin. In relation to the grain fungal hyphÆ have usually been found, though not invariably, 20 to 30 per cent. of the plants sometimes being free from it. The fungus (Endoconidium temulentum) is propagated vegetatively by means of mycelium. It appears to live symbiotically in the maturing grain, and perhaps to a slight extent renders possible the assimilation of nitrogen from the atmosphere; but Freeman observed that though generally stimulating to the Darnel, it is occasionally injurious to it. Esser sums it up by saying that according to most authorities who have investigated Darnel the fungus alone contains the toxic substance—the Temuline—and hence the grains in which the fungus does not occur should be harmless. The fungus is found in Darnel grain in all countries—Chile, Brazil, S. Africa, Persia, Spain, France, Sweden, Germany, etc. So far as can be ascertained there have been no feeding experiments to determine the difference in toxic character between fungus-infested and fungus-free grains. The dangerous properties are said to be most pronounced in wet seasons. Symptoms. In France Darnel is called Ivraie, because, when brewed with barley, it acts as a narcotic intoxicant. The symptoms in the horse are dilatation of pupils, vertigo, uncertain gait, and trembling. The animal falls, the body is cold and the extremities are stiff, respiration is laboured, the pulse is slow and small, and there are convulsive movements of the head and limbs. There is rapid enfeeblement, and death may occur within thirty hours. In pigs, foaming, convulsions and paralysis have been observed; the stomach and intestines were inflamed and the lungs congested. EQUISETACEÆ.Horsetails (Equisetum sp.). A very great deal has been written on the subject of Equisetosis or Equisetum poisoning, and even at the present day opinion is divided as to which species are poisonous and to what extent. From the time of LinnÆus there has been uncertainty as to the species, which has generally been given as E. arvense. Two German papers, by Weber and Lohmann respectively, published by the German Agricultural Society in 1903 and 1904, have done much to remove doubt on the matter, but cannot be said to have settled the question absolutely. These two papers seem to have been overlooked by some recent writers on the subject, but Lohmann’s appears to be the most authoritative paper yet written. Both are referred to below. It seems to be definitely proved that certain species of Equisetum really are poisonous, hesitating statements notwithstanding. Chesnut and Wilcox state that there are cases of poisoning of both horses and sheep by E. arvense in the United States, though they are not common, and the opinion is expressed that “the plant, if deleterious, is evidently so only on account of its harsh scouring action in the mouth and intestinal tract.” On the other hand Rich and Jones record poisoning of horses by E. arvense in hay, but while adding that horses seem to develop a depraved appetite for the weed, they state that they have no evidence that horses grazing upon the green plant are poisoned. GÜssow’s experience has been that cattle do not suffer any inconvenience at all Coming to the two German reports, it is stated by Weber (1903) that E. palustre contains a specific poison for cattle and other ruminants, but sheep and goats are able, owing to their fine muzzles, to separate it in fodder, and hence suffer less. Horses and pigs, he says, seem to suffer very little. Young animals and stock, from districts where the species does not occur, suffer more than those from places where it occurs—the latter appearing to learn early to avoid it. Lohmann conducted feeding experiments with guinea-pigs with E. arvense, E. palustre, E. pratense, E. sylvaticum, E. maximum, and E. heleocharis (not British). He also fed E. arvense and E. palustre to horses, cattle, sheep, pigs, and geese in considerable quantities for many days on end; and made experiments with aconitic acid on guinea-pigs and horses. The feeding experiments with guinea-pigs showed that of the species named only E. palustre and to a less extent E. sylvaticum are poisonous plants (to guinea-pigs). With the large domestic animals the experiments showed E. arvense to be a harmless plant, and E. palustre to be really injurious to cattle but avoided by other stock. Lohmann considers that the many statements in the literature agree in part with this result, and that the divergent observations may be traced to various causes, among which perhaps an abnormal chemical composition of the weed fed plays a principal part. In this connection, however, the American results must be carefully borne in mind, and E. arvense must not too hastily be regarded as blameless. Toxic Principle. It was for some years believed that the apparent Symptoms. At first, excitement and anxiety, followed by uncertainty of movement, reeling and staggering; paralysis of hind limbs at least, falling, possibly general paralysis, insensibility to external irritants, unconsciousness, and coma. Pulse accelerated, appetite at first normal, but in course of time great disturbance of nutrition; sugar in the urine. Course sometimes very acute, death occurring in a few hours, but sometimes protracted (two to eight days), and at times even chronic (one to several weeks). In cattle, after excessive eating, continuous diarrhoea is characteristic, with paralysis; while, if the food be persisted with, cachexia and hydrÆmia combined with weakness bordering on paralysis make their appearance (Friedberger and FrÖhner, via Pammel). In addition to cachexia, Pott also mentions colic, stoppage, bloody urination, abortion, and loss of teeth. Young animals appear to succumb sooner than older ones, while grain-fed animals are more resistant than others. Referring to E. Of Equisetum sp. Stebler and Schroeter say that they induce diarrhoea in cattle, which become poor, and in cows the milk yield is checked or ceases. Weber also refers to the effect on milk yield of E. palustre, which he says causes the milk of affected cows to become watery, poor in fat, and gives rise to a greasy, unappetising butter, while the yield may soon quite fail. FILICES.Bracken (Pteris aquilina L.). The Bracken, Brake Fern, or “Fern” is of very considerable importance to farmers for four reasons: (1) It is a most pernicious weed; (2) it forms an excellent litter for stock and treads down into good manure; (3) it is said to have been successfully converted into silage; but (4) it has been accused of poisoning cattle. In regard to possible poisonous properties, it must be said that the facts are at present somewhat uncertain, but a number of authorities clearly regard the Bracken as poisonous. (a) MÜller (1897) records the poisoning of horses which ate it for some weeks with chaff—and some In 1893 Storrar dealt with the question and expressed the view that any disorder due to Bracken was probably not a toxic effect but a digestive trouble simply (Jour. Comp. Path., 1893). Toxic Principle. Continental authorities say that Bracken contains the poisonous Pteritannic acid, which is identical with the Filicic acid of the Male Fern (Aspidium filix-mas). Symptoms. In the cases of horses which died MÜller gives the symptoms as timidity, slower movement or action, loss of balance, dilated pupils, reddening followed by yellowing of the conjunctivÆ, and slowing of the pulse. Pammel notes Bracken as an astringent and anthelmintic, and also says it causes enteritis, spasms, and paralysis. FUNGI |