The grandeur of the scale upon which the visible universe is fashioned lies almost beyond human comprehension. In measuring the vast extent of our own solar system, which is but a single unit in the system of the stars, we may have recourse to some earthly standard of measurement, such as the mile. But when we desire to express in terms of units that can be grasped by our imagination, the distances of the stars that lie far, far beyond, we find that all ordinary standards of measurement become utterly inadequate for our purpose. In the measurement of celestial distances within the solar system the unit employed is either the familiar mile or kilometer or the "astronomical unit," which is the mean distance from the earth to the sun (ninety-two million nine hundred thousand miles in round numbers). In the measurement of distances beyond the solar system the unit employed is either the light-year or more recently the parsec, which is rapidly replacing the light-year among astronomers. A "light-year" is the distance that light, with its finite but almost unimaginable velocity of one hundred and eighty-six thousand miles per second, travels in a year. It is equal in round Before considering the distances of the stars and the extent of the sidereal system of which our sun and his satellites form a part, let us undertake to express the distance of the sun, moon and planets from the earth and the extent of the solar system in terms with which we are familiar. The nearest to the earth of all celestial bodies is its satellite, the moon. So near is the moon that if we should make on some great plain a model of the solar system in which the astronomical unit, the distance from earth to sun, would be four hundred feet, the distance between the earth and moon would be only Granted that it were possible to escape the earth's gravitational bonds and to travel by our swiftest means of conveyance, the airplane, through interplanetary space, let us consider how long it would take us to reach the moon, sun and planets if our speed were maintained at a uniform rate of two hundred miles an hour. An airplane traveling at this rate would circumnavigate the earth in a little over five days and would reach the moon in seven weeks. A trip to the sun, however, would take fifty-three years. After traveling for fourteen and a fraction years we would pass the orbit of Venus and eighteen years later the orbit of Mercury. If we preferred to travel outward from the earth in the direction of Mars and the outer planets instead of toward the sun, more than twenty-seven years would elapse before we would reach the orbit of Mars. An airplane journey to Jupiter would be a matter of more than two hundred years, to Saturn four hundred and fifty years, to Uranus nearly one thousand years, and to Neptune, about one thousand five hundred years. To cross the solar system on the diameter of Neptune's orbit in an airplane, traveling day and night without stopping at the rate of 200 miles per hour would take more than three thousand years. The sun's attraction reaches far beyond Neptune's orbit, however. There are comets belonging to the solar system compelled by the sun's attraction to accompany him on his travels through space that return Measured in terms of familiar units, such as are employed for the measurement of distances on our own planet, the extent of the solar system is tremendously great. Viewed from Neptune, the sun is so far away that it presents no appreciable disk. It is in this sense star-like to the Neptunians, but at the distance of Neptune the stars appear no more brilliant and no nearer than they do to us. To Neptune the sun, though star-like in form, supplies a very appreciable quantity of light and heat (one nine-hundredth of the amount the earth receives) while the amount of light and heat that Neptune receives from the nearest stars is entirely inappreciable. When our airplane reaches Neptune after a journey of one thousand five hundred years, it is, as it were, just clearing the ground for its flight to the stars. To cover the intervening space to the nearest star, traveled by light in four and a third years, an airplane would need fourteen and a half million years. In that time the solar system itself would be in some far distant part of the universe, since it is speeding onward through space at the rate of twelve miles a second or about four astronomical units a year. Changing now our unit of measurement that we may express interstellar distances in comprehensible With this velocity, one hundred and eighty-six thousand miles per second, we circumnavigate our globe in one-seventh of a second, reach the moon in one and a fourth seconds and the sun in eight minutes. In a little over four hours we pass the orbit of Neptune and are started on our journey to the stars, penetrating further and further into interstellar space. For a year we travel and reach not a single star though we are speeding ever onward with the velocity of light. We have now covered the distance of one light-year, which means that the waves of light from the sun we have left behind must travel for a year before they reach us. We continue our journey and find ourselves next at a distance of one parsec from the sun. We have traveled a distance of approximately three and a quarter light-years, and were it possible to see the earth as well as the sun at this distance, the two would appear to be but one second of arc apart, a distance that requires the most careful adjustment and manipulation of the telescope to measure accurately. We are still one light-year distant from Alpha Centauri, the nearest of the bright stars. A few of the stars will now appear somewhat brighter than they appeared to us on earth, but the majority of the stars appear just as we see them here and the forms of the constellations remain practically unchanged in appearance, for we are only beginning our journey through the sidereal universe and our position Stars that are ten, fifty or even one hundred light-years from the earth are our nearest neighbors in space. They are the stars that show a slight displacement in the heavens or measurable parallax, viewed from opposite sides of the earth's orbit. There are probably a thousand stars among the hundreds of millions of stars within reach of the greatest telescopes whose distances have been determined in light-years by direct measurement of their displacement in the heavens resulting from the change of position of the earth in its orbit. The most distant of the stars are apparently immovable in the heavens showing neither the effect of the sun's motion or their own motion through space. Methods for finding the distances of many far remote stars and star-clusters have been devised, however, and some comparatively recent investigations have given results for the distances of these objects indicating that the diameter of the system of stars to which our sun belongs is approximately three hundred thousand light-years. It is difficult to grasp the full significance of this fact. It means that hundreds of millions of the suns of space throng the visible universe at distances from us and from each other running into hundreds, thousands and even hundreds of thousands of light-years. The light waves Astronomers have found as a result of their investigations that the sidereal system to which our solar system belongs is in the form of a flattened spheroid with its longest axis in the plane of the Milky Way. The extent of this star system composed of hundreds of millions of individual suns in addition to nebulÆ and clusters is probably something like three hundred thousand light-years along its longest axis, while globular star clusters lying above and below its central plane are estimated to be at distances from it ranging from ten thousand to two hundred thousand light-years. This entire organized system is our sidereal universe. Space beyond is unexplored. The globular star clusters are among the most distant celestial objects so far discovered. The spiral nebulÆ may be entirely within the limits of this system or they may be even more distant than the globular clusters for their distances are not known as yet. There is a possibility that our sidereal universe, vast as it is known to be, may be but a unit in some still greater unit and that other similar systems lie beyond the reach of existing telescopes at unimaginable distances. The mind of man is overwhelmed by the thought of sidereal systems as vast as our own lying far beyond So vast, indeed, is this one visible universe of ours that the mind of man, accustomed to earthly standards, cannot comprehend its magnitude or the infinitesimal size of our whole solar system compared to it. |