XXX ASTRONOMICAL DISTANCES

Previous

The grandeur of the scale upon which the visible universe is fashioned lies almost beyond human comprehension. In measuring the vast extent of our own solar system, which is but a single unit in the system of the stars, we may have recourse to some earthly standard of measurement, such as the mile. But when we desire to express in terms of units that can be grasped by our imagination, the distances of the stars that lie far, far beyond, we find that all ordinary standards of measurement become utterly inadequate for our purpose. In the measurement of celestial distances within the solar system the unit employed is either the familiar mile or kilometer or the "astronomical unit," which is the mean distance from the earth to the sun (ninety-two million nine hundred thousand miles in round numbers).

In the measurement of distances beyond the solar system the unit employed is either the light-year or more recently the parsec, which is rapidly replacing the light-year among astronomers. A "light-year" is the distance that light, with its finite but almost unimaginable velocity of one hundred and eighty-six thousand miles per second, travels in a year. It is equal in round numbers to sixty-three thousand times the distance from the earth to the sun or approximately six thousand billions of miles. The parsec is equal to three and twenty-six hundredths (3.26) light-years, and it is approximately two hundred thousand times the distance from the earth to the sun. It is "the distance of a star with the parallax of a second," a fact which its name, parsec, conveys to us. In other words, at the distance of one parsec the distance from the earth to the sun, "the astronomical unit," would subtend an angle equal to one second of an arc. This angle is spoken of as the parallax of the star. The larger the parallax, that is, the larger the angle the astronomical unit or radius of the earth's orbit subtends, viewed from the star, the nearer the star is to us. The fact that there is no known star within one parsec, or three and twenty-six hundredths light-years, of the sun shows the immensity of the scale of the universe of stars.

Before considering the distances of the stars and the extent of the sidereal system of which our sun and his satellites form a part, let us undertake to express the distance of the sun, moon and planets from the earth and the extent of the solar system in terms with which we are familiar.

The nearest to the earth of all celestial bodies is its satellite, the moon. So near is the moon that if we should make on some great plain a model of the solar system in which the astronomical unit, the distance from earth to sun, would be four hundred feet, the distance between the earth and moon would be only one foot. On the same scale the most distant planet Neptune would be two and one-quarter miles away.

Granted that it were possible to escape the earth's gravitational bonds and to travel by our swiftest means of conveyance, the airplane, through interplanetary space, let us consider how long it would take us to reach the moon, sun and planets if our speed were maintained at a uniform rate of two hundred miles an hour. An airplane traveling at this rate would circumnavigate the earth in a little over five days and would reach the moon in seven weeks. A trip to the sun, however, would take fifty-three years.

After traveling for fourteen and a fraction years we would pass the orbit of Venus and eighteen years later the orbit of Mercury. If we preferred to travel outward from the earth in the direction of Mars and the outer planets instead of toward the sun, more than twenty-seven years would elapse before we would reach the orbit of Mars. An airplane journey to Jupiter would be a matter of more than two hundred years, to Saturn four hundred and fifty years, to Uranus nearly one thousand years, and to Neptune, about one thousand five hundred years. To cross the solar system on the diameter of Neptune's orbit in an airplane, traveling day and night without stopping at the rate of 200 miles per hour would take more than three thousand years. The sun's attraction reaches far beyond Neptune's orbit, however. There are comets belonging to the solar system compelled by the sun's attraction to accompany him on his travels through space that return periodically to the immediate vicinity of the sun from regions far beyond the orbit of Neptune and there is also the possibility that one or more undiscovered planets may travel around the sun in orbits far exterior to Neptune's orbit.

Measured in terms of familiar units, such as are employed for the measurement of distances on our own planet, the extent of the solar system is tremendously great. Viewed from Neptune, the sun is so far away that it presents no appreciable disk. It is in this sense star-like to the Neptunians, but at the distance of Neptune the stars appear no more brilliant and no nearer than they do to us.

To Neptune the sun, though star-like in form, supplies a very appreciable quantity of light and heat (one nine-hundredth of the amount the earth receives) while the amount of light and heat that Neptune receives from the nearest stars is entirely inappreciable. When our airplane reaches Neptune after a journey of one thousand five hundred years, it is, as it were, just clearing the ground for its flight to the stars. To cover the intervening space to the nearest star, traveled by light in four and a third years, an airplane would need fourteen and a half million years. In that time the solar system itself would be in some far distant part of the universe, since it is speeding onward through space at the rate of twelve miles a second or about four astronomical units a year.

Changing now our unit of measurement that we may express interstellar distances in comprehensible numbers, we prepare to travel from the earth to the stars with the velocity of light.

With this velocity, one hundred and eighty-six thousand miles per second, we circumnavigate our globe in one-seventh of a second, reach the moon in one and a fourth seconds and the sun in eight minutes. In a little over four hours we pass the orbit of Neptune and are started on our journey to the stars, penetrating further and further into interstellar space. For a year we travel and reach not a single star though we are speeding ever onward with the velocity of light. We have now covered the distance of one light-year, which means that the waves of light from the sun we have left behind must travel for a year before they reach us. We continue our journey and find ourselves next at a distance of one parsec from the sun. We have traveled a distance of approximately three and a quarter light-years, and were it possible to see the earth as well as the sun at this distance, the two would appear to be but one second of arc apart, a distance that requires the most careful adjustment and manipulation of the telescope to measure accurately. We are still one light-year distant from Alpha Centauri, the nearest of the bright stars. A few of the stars will now appear somewhat brighter than they appeared to us on earth, but the majority of the stars appear just as we see them here and the forms of the constellations remain practically unchanged in appearance, for we are only beginning our journey through the sidereal universe and our position in it has only shifted by a very slight amount. If we should continue our journey to the immediate vicinity of Alpha Centauri, we would find that it is not like our own sun, a single star, but is a binary star consisting of two suns in revolution around their common center of gravity. The distance of this binary system from the solar system has been measured with considerable accuracy and is known to be four and a third light-years. Though there may be a few faint stars or non-luminous stars nearer to us than Alpha Centauri, this star has long held the distinction of being the nearest of the stars. As the sun continues his journey through the universe the two stars, Alpha Centauri and our sun, will finally draw away from each other after many ages have passed and some other sun of space will be our nearest star. The distances that separate the stars from each other probably average as great as the distance from the sun to Alpha Centauri. Within a sphere whose center is at the earth and whose radius is five parsecs, or about sixteen light-years, there are only about twenty known stars. There is, therefore, small chance of collision among bodies that are so small in proportion to the tremendous intervals of space that separate them from each other. There is ample room for the individual stars to pursue their journey through space without interfering with each other's motion so long as they are as widely scattered as they appear to be in this portion of the universe. The fact that our own sun has continued its journey through the universe for some hundreds of millions of years without any catastrophe such as would result from closely approaching or colliding with another sun of space shows how enormous is the scale upon which our sidereal system is fashioned.

Stars that are ten, fifty or even one hundred light-years from the earth are our nearest neighbors in space. They are the stars that show a slight displacement in the heavens or measurable parallax, viewed from opposite sides of the earth's orbit. There are probably a thousand stars among the hundreds of millions of stars within reach of the greatest telescopes whose distances have been determined in light-years by direct measurement of their displacement in the heavens resulting from the change of position of the earth in its orbit. The most distant of the stars are apparently immovable in the heavens showing neither the effect of the sun's motion or their own motion through space. Methods for finding the distances of many far remote stars and star-clusters have been devised, however, and some comparatively recent investigations have given results for the distances of these objects indicating that the diameter of the system of stars to which our sun belongs is approximately three hundred thousand light-years. It is difficult to grasp the full significance of this fact. It means that hundreds of millions of the suns of space throng the visible universe at distances from us and from each other running into hundreds, thousands and even hundreds of thousands of light-years. The light waves from some tiny object that we view today in one of our great reflectors may have started on their journey through space over one hundred thousand years ago when men of the Old Stone Age inhabited our planet earth!

Astronomers have found as a result of their investigations that the sidereal system to which our solar system belongs is in the form of a flattened spheroid with its longest axis in the plane of the Milky Way. The extent of this star system composed of hundreds of millions of individual suns in addition to nebulÆ and clusters is probably something like three hundred thousand light-years along its longest axis, while globular star clusters lying above and below its central plane are estimated to be at distances from it ranging from ten thousand to two hundred thousand light-years. This entire organized system is our sidereal universe. Space beyond is unexplored. The globular star clusters are among the most distant celestial objects so far discovered. The spiral nebulÆ may be entirely within the limits of this system or they may be even more distant than the globular clusters for their distances are not known as yet.

There is a possibility that our sidereal universe, vast as it is known to be, may be but a unit in some still greater unit and that other similar systems lie beyond the reach of existing telescopes at unimaginable distances.

The mind of man is overwhelmed by the thought of sidereal systems as vast as our own lying far beyond his ken. Whether or not such external systems do exist and are with our own sidereal system units in some still vaster creation we cannot know.

So vast, indeed, is this one visible universe of ours that the mind of man, accustomed to earthly standards, cannot comprehend its magnitude or the infinitesimal size of our whole solar system compared to it.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page