XXVII THE MOTIONS OF THE HEAVENLY BODIES

Previous

About three hundred and twenty years ago Giordano Bruno was burned at the stake for his audacity in believing in the existence of other worlds. A few decades later the famous astronomer Galileo was forced to publicly recant his belief that the earth moved. Yet the truth could not long be suppressed by such means, and since those dark days man's advance in knowledge has been so rapid that it seems to us today in this wonderful age of scientific discovery almost inconceivable that man ever believed that the earth, a tiny planet of a vast solar system, was "the hub of the universe," the fixed and immovable center about which revolved all the heavenly bodies. Very reluctantly, however, and with bitter feeling, but in the light of overwhelming evidence man finally gave up his long-cherished idea of terrestrial importance, and when finally forced to move his fixed center of the universe, he moved it only so far as the comparatively nearby sun.

This center he then regarded as fixed in space and also held to his belief that the stars, set in an imaginary celestial sphere, were immovable in space as well, and all at the same distance from the sun. So, scarcely two hundred years ago we find that the astronomer Bradley was endeavoring to measure this common distance of the "fixed stars." Though he failed in this attempt he made the important discovery that the observed positions of the stars are not their true positions, owing to the fact that the velocity of light is not infinite but takes a definite finite interval of time to travel a given distance. As a result the stars always appear displaced in the direction of the earth's motion around the sun, the amount of the displacement depending upon the velocity of the earth in its orbit and the velocity of light. This "aberration of light," as it is called, furnished additional proof that the earth revolves about the sun and was one more nail driven into the coffin of the old Ptolemaic theory that the earth was the center of the universe. Bradley also discovered that the positions of the stars were affected by the wabbling of the earth's axis, called its "nutation."

Although in the days of Bradley neither the methods of observation nor the instruments were sufficiently accurate to show the minute shifts in the positions of the stars that reveal the individual motions of the stars and the distances of those nearest to us, yet the discovery of the two large displacements in the positions of all the stars, due to the aberration of light and the nodding of the earth's axis were of the greatest value, for they were a necessary step in the direction of the precise measurements of modern times. It is only through measurements of the greatest refinement and accuracy that it is possible to detect the motions and distances of the stars and to discover the wonderful truths about the nature and structure of the universe that they are revealing to us today.

After unsuccessful attempts extending over several centuries the distance of one of the nearest stars, the faint 61 Cygni, as it is catalogued, was finally determined by the astronomer Bessel in the year 1838.

This star is about ten light-years distant from the earth, which places it about six hundred and thirty thousand times farther away from us than the sun; that is, we would have to travel six hundred and thirty thousand times the distance from the earth to the sun to reach this very close stellar neighbor, 61 Cygni. The nearest of all the stars, Alpha Centauri, is over two hundred and seventy thousand times the distance from the earth to the sun. It is, therefore, little wonder that the early astronomers believed that the stars were fixed in space since even the nearest is so far away that, viewed from opposite points in the earth's orbit, its apparent change in position due to our actual change in position of 186,000,000 miles, amounts to only one and a half seconds of arc. Two stars separated by one hundred and sixty times this angular distance might possibly be glimpsed as two distinct stars by a person with good eyesight, though to most of us they would appear as one star. Upon the measurement of such minute angles depended a knowledge of the distances of the nearest stars.

It is to Sir William Herschel that we owe the discovery, more than a hundred years ago, of the motion of the sun through the universe. From the consideration of a long series of observations of the positions of the stars this famous astronomer discovered that the stars in the direction of the constellation Hercules were separated by much greater angular distances than the stars diametrically opposite in the heavens. In other words, the stars were spreading apart in one portion of the heavens and crowding together in the opposite direction and he rightly interpreted this to mean that the sun was moving in the direction of the constellation of Hercules. It was not until the spectroscope was applied to the study of the heavens in the latter part of the nineteenth century that the amount of this motion of the sun was found to be about twelve and a half miles per second, or four times the distance from the earth to the sun in a year.

It is to Sir William Herschel that we owe also the discovery of binary systems of stars in which two stars swing around a point between them called their center of gravity.

Spiral Nebula in Canes Venatici

Taken with 60-inch Reflector of the Mt. Wilson Observatory

Our first conception of the immensity and grandeur of the universe dates from the time of the older Herschel only a century or so ago. The mysterious nebulÆ and star clusters were then discovered, the wonders of the Milky Way were explored, and a new planet and satellites in our own solar system were discovered. It was found that the sun and the stars as well as the planets were in motion. Neither sun nor earth could be regarded any longer as a fixed point in the universe.

With the application of the spectroscope to the study of the heavens toward the end of the nineteenth century the key to a treasure-house of knowledge was placed in the hands of the astronomers of modern times and as a result we are now learning more, in a few decades, about the wonders and mysteries of the heavens than was granted to man to learn in centuries of earlier endeavor. Yet it is the feeling of the astronomer of today that he is only standing on the threshold of knowledge and that the greatest of all discoveries, that of the nature of matter and of time and space is yet to be made.

It is the spectroscope that tells us so many wonderful facts about the motions of the stars, nebulÆ and star clusters. It tells us also practically all we know about the physical condition of our own sun and of the other suns of the universe, their temperature and age, and the peculiarities of their atmospheres.

Some of the most important astronomical discoveries that have been made in the past few years have to do with the distribution and velocities of the heavenly bodies as revealed by the spectroscope.

It has been found, with the aid of the spectroscope, that the most slowly moving of all stars are the extremely hot bluish Orion stars with an average velocity of eight miles per second, while the most rapidly moving stars are the deep-red stars with an average velocity of twenty-one miles per second, and there is in all cases a relationship existing between the color, or spectrum, of a star and its velocity. The reason for this connection between the two still remains undiscovered.

The spectroscope has also told us some astonishing facts in recent years about the velocities of the spiral nebulÆ.

It is now known that these mysterious objects are moving with the tremendous average velocity of four hundred and eighty miles per second, which exceeds the average velocity of the stars fully twenty-five fold. They possess, moreover, internal motions of rotation that are almost as high as their velocities through space. It is now generally believed that spiral nebulÆ are far distant objects of enormous size and mass, exterior to our own system of stars and similar to it in form.

In place of the universe of the "fixed stars" and the immovable sun or earth of a few centuries ago we find that modern astronomical discovery is substituting a universe of inconceivable grandeur and immensity in a state of ceaseless flux and change.

Our earth—an atom spinning about on its axis and revolving rapidly around a huge sun that is equal in volume to more than a million earths—is carried onward with this sun through a vast universe of suns.

Only an average-sized star among several hundred million other stars is this huge sun of ours, moving with its planet family through the regions of the Milky Way, where are to be found not only moving clusters and groups of stars, speeding along their way in obedience to the laws of motion of the system to which they belong, but also strangely formed nebulÆ covering vast stretches of space, whirling and seething internally and shining with mysterious light, and still other stretches of dark obscuring matter shutting off the rays of suns beyond.

The extent and form of this enormous system of stars and nebulÆ and the laws that govern the motions of its individual members are among the problems that the astronomers of today are attempting to solve. On both sides of these regions of the Milky Way, wherein lies our own solar system, lie other vast systems, such as the globular star clusters, composed of thousands, possibly hundreds of thousands, of suns; the Magellanic clouds, which resemble detached portions of the Milky Way, and, probably, the much discussed spiral nebulÆ, possible "island universes" similar to our own.

We have come far in the past three hundred years from the conception of an immovable earth at the center of the universe to this awe-inspiring conception of the universe that we have today, which is based upon modern astronomical discoveries.

Whatever may be discovered in the future in regard to the form and extent of the universe the idea of a fixed and immovable center either within the solar system or among the stars beyond has gone from the minds of men at last.

Spiral Nebula in Andromeda viewed edgewise

Taken with 60-inch Reflector of the Mt. Wilson Observatory

Not more than a generation ago a survival of the old idea of a fixed center was seen in the belief that Alcyone, in the Pleiades was a "central sun" about which all the stars revolved. It is now well known that the Pleiades form a moving star cluster. Alcyone is therefore drifting slowly onward through the universe and the idea of a fixed and immovable center to which man may anchor his ideas is drifting away also. There are, it is true, local centers of systems, such, for instance, as the sun occupies in the solar system or some group of stars may occupy in the stellar system to which our sun belongs, yet as a whole these systems move on and their centers with them. There is no evidence today that any absolutely immovable point exists in the heavens.

No celestial object has been found to be without the attribute of motion, not only motion onward through the universe, but also rotational motion about an axis of the body. The planets rotate on their axes as well as revolve about the sun, and the sun also turns on its axis as it moves onward through space. This rotational motion is also found in the nebulÆ and star clusters as well as in the stars and planets. No object in the heavens is known to be without it. Even the slowly drifting Orion nebula possesses a rapid internal velocity of rotation. There is no such thing as a body absolutely at rest in the universe.

TABLE

Showing the number and relative size, velocity and distribution of the various types of celestial objects.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page