The orbits of comets are inclined at all angles to each other and to the orbits of the planets which, on the other hand, lie very nearly in the same plane. The larger members of the sun's family, the planets and their satellites, revolve from west to east around the sun. Comets on the contrary frequently retrograde or back around the sun in the opposite direction—from east to west. The paths that these erratic visitors follow in their journeys around the sun bear not the slightest resemblance to the paths of the planets, which are almost perfect circles. The orbits of comets are ellipses that are greatly elongated or parabolas. If the orbit is a parabola the comet makes one and only one visit to the sun, coming from interstellar space and returning thereto after a brief sojourn within our solar system. Donati's comet of 1858, one of the greatest comets of the nineteenth century, had a period of more than two thousand years and its aphelion (the point in its orbit farthest away from the sun) was five times more distant than the orbit of Neptune. There is, however, a class of comets known as periodic comets that have extremely short periods of Comets are bodies of great bulk or volume and small total mass. Their tails, which only develop in the vicinity of the sun, are formed of the rarest gases, and the best vacuum that man can produce would not be in as tenuous a state as the material existing in the tails of comets. There are many proofs of the extreme tenuity of comets. The earth has on a number of occasions passed directly through the tails of comets without experiencing the slightest visible effects. Stars shine undimmed in luster even through the heads of comets. If the earth should encounter a comet "head on" it is doubtful if it would experience anything more serious than a shower of meteors which would be consumed by friction with the earth's atmosphere, or a fall of meteorites over a small area of a few square miles. It is possible, however, that matter in the nucleus, the star-like condensation in the head of a comet, may consist of individual particles weighing in some instances a number of tons, surrounded by a gaseous Since the total mass of a comet is so small, a close approach to one of the planets, especially Jupiter, produces great changes in the form of the comet's orbit, though the motion of the planet is not disturbed in the slightest degree by the encounter. The majority of all the short-period comets have been "captured" by Jupiter, that is, the original orbits have been so changed by the perturbations produced by close approaches to the giant planet that their aphelia, or the points in their orbits farthest from the sun, lie in the vicinity of Jupiter's orbit. Several of the other planets have also "captured" comets in this sense, and the fact that the aphelia of a number of comets are grouped at certain definite intervals beyond the orbit of Neptune has been considered by some astronomers to be an indication that there are two or more additional planets in the solar system revolving around the sun at these distances. The most interesting feature of a comet is its characteristic tail which develops and increases in size and brilliancy as the comet approaches the sun. As the tail is always turned away from the sun it follows the comet as it draws near the sun and precedes it as it departs. Its origin is due, it is believed, both to electrical The curvature of the tail depends upon the nature of the gases of which it is composed. Long, straight tails consist chiefly of hydrogen, it has been found, curved tails of hydrocarbons and short, bushy tails of mixtures of iron, sodium and other metallic vapors. At times the same comet will have two or more tails of different types. Since the material driven off from the nucleus or head of a comet by electrical repulsion and light-pressure is never recovered, it is evident that comets are continually disintegrating. Also, comets that have passed close to the sun at perihelion have frequently been so disrupted by tidal forces that one nucleus has separated into several parts and the newly formed nuclei have pursued paths parallel to the original orbit, each nucleus developing a tail of its own. Many periodic comets, it is now known, have gradually been broken up and dissipated into periodic swarms of meteors as a result of the disruptive effect produced by too frequent returns to the vicinity of the sun. These swarms of meteors continue to travel around the sun in the orbits of the former comets. The earth encounters a number of such swarms every year at certain definite times. The largest and best known of these swarms or showers are the Leonids, which appear about November 15; the Andromedas (or Bielids), which appear later in the same month and the Perseids, which appear early The luminosity of these meteoric particles is caused by the friction produced by their passage through the atmosphere. They always appear noiselessly because they are mere particles of meteoric dust weighing at the most scarcely a grain. They differ greatly in this respect from their large and noisy relatives, the meteorites, bolides and fireballs. Numberless small meteoric particles are entrapped by the earth's atmosphere every day. They are referred to as "shooting" stars or "falling" stars though, of course, they are not in any sense stars. It is only when these meteoric particles travel in well-defined cometary orbits and appear at certain definite times every year that they are referred to as swarms or showers of meteors. The luminosity of comets is due not only to reflected sunlight, but to certain unknown causes that produce sudden and erratic increases or decreases of brilliancy. The causes of these sudden changes in luminosity are unknown; possibly electrical discharges or chance collisions between fragments of considerable size may account for some of them. The peculiar behavior of the tails of comets at certain times has frequently been noted and suggests the existence of quantities of finely-divided meteoric or gaseous matter within the solar system that has no appreciable effect upon the huge planetary masses, but offers sensible resistance to the passage of the tenuous gases of which the tails of comets are composed. The fact that the earth daily encounters meteoric dust, meteorites and fireballs also indicates that meteoric matter exists in considerable quantities within our solar system. Tails of comets appear at times to be twisted or brushed aside as if they had encountered some unknown force or some resisting medium. Up to the present time several hundred comets have been discovered. Nearly three-fourths of this number travel in orbits that appear to be parabolas. Of the remaining number there are about forty that have been "captured" by the major planets, Jupiter, Saturn, Uranus and Neptune, though Jupiter possesses the lion's share of these captured comets. Scarcely a year passes by that several comets are not discovered. Most of these are telescopic, however, even when they are near the sun and at their greatest brilliancy. Naked-eye comets of great splendor and brilliancy are comparatively rare and there has been a particular dearth of such unusual comets during the past thirty years or so. The last spectacular comet, unless we make an exception of Halley's periodic comet, which made its return according to prediction in 1910, was the great Some comets approach much closer to the sun than others. The majority of all comets observed have come within the earth's orbit and no known comet has its perihelion beyond the orbit of Jupiter. It is, of course, possible that there may be a number of comets that never come within the orbit of Jupiter, but it is very unlikely that any such comet would ever be discovered. The majority of comets are simply small, fuzzy points of light that are only visible telescopically and the greater the perihelion distance of the comet the less likely is it to be seen with the naked eye. Since comets as well as planets obey Kepler's first law, known as the law of areas, and sweep over equal areas in equal times, it is evident that when a comet is at perihelion, or nearest to the sun, it is moving at maximum speed and when it is at aphelion, or farthest from the sun, it is moving at minimum speed. Moreover, its speed at these two points in its orbit varies tremendously since the orbits of comets are ellipses of very high eccentricity. The speed with which the planets are traveling is, on the other hand, remarkably uniform since their orbits are nearly circular. The leisurely speed with which a comet travels through the frigid outer regions of the solar system |