CHAPTER I. THE PROBLEM STATED. (2)

Previous

1. The peculiarity of the Reflex Theory is its exclusion of Sensibility from the actions classed as reflex; in consequence of which, the actions are considered to be “purely mechanical.”

No one denies that most of the reflex actions often have conscious sensations preceding and accompanying them, but these are said not to be essential to the performance of the actions, because they may be absent and the actions still take place. It is notorious that we breathe, wink, swallow, etc., whether we are conscious of these actions or not. Our conclusion therefore is that these peculiar states of Consciousness are accessory, not essential to the performance of these actions. The fact is patent, the conclusion irresistible. But now consider the equivoque: because an action takes place without our being conscious of it, the action is said to have had no sensation determining it. This, which is a truism when we limit Consciousness to one of the special modes Of Sensibility, or limit sensation to this limited Consciousness, is a falsism when we accept Consciousness as the total of all combined sensibilities, or Sensation as the reaction of the sensory mechanism. That a reflex action is determined by the sensory mechanism, no one disputes; whether the reaction of a sensory mechanism shall be called a sensation or not, is a question of terms. I have shown why it must be so called if anything like coherence is to be preserved in physiological investigations; and I have more than once suggested that the fact of intellectual processes taking place at times with no more consciousness than reflex actions, is itself sufficient to show that a process does not lapse from the mental to the mechanical sphere simply by passing unconsciously.

Inasmuch as an organism is a complex of organs, its total function must be a complex of particular functions, each of which may analytically be treated apart. Vitality is the total of all its physiological functions, and Consciousness the total of all its psychological functions. But inasmuch as it is only in its relation to the whole that each part has functional significance, and cannot therefore be isolated in reality, as it is in theory—cannot live by itself, act by itself, independently of the organism of which it is an organ, there is strict accuracy in saying that no particular sensation can exist without involving Consciousness; for this is only saying that no sensory organ can react without at the same time involving a reaction of the general sensorium. But since this general sensorium is simultaneously affected by various excitations each of which is a force, every sensation, perception, emotion, or volition is a resultant of the composition of these forces; and as there can be only one resultant at a time, to be replaced by another in swift succession, this one represents the state of Consciousness, and this state may or may not be felt under the peculiar mode named “Consciousness,” in its special meaning. In other words, the reaction of a sensory organ is always sentient, but not always consentient.

2. Let us illustrate this by the sensation of musical tone. When we hear a tone we are affected not only by the fundamental tone, representing the vibrations of the sounding body as a whole, but also by the harmonics or overtones, representing the vibrations of the several parts of that whole. It is these latter vibrations which give the tone its timbre, or peculiar quality; and as the harmonics are variable with the variable structure of the vibrating parts, two bodies which have the same fundamental tone may have markedly different qualities. There are some tones which are almost entirely free from harmonics; that is to say, their harmonics are too faint for our ear to appreciate them, though we know that the vibrations must be present. Apply this to the excitations of the sensorium. Each excitation will have its fundamental feeling, and more or less accompanying thrills of other feelings: it is these thrills which are the harmonics, giving to each excitation its specific quality; but they may be so faint that no specific quality is discriminated. A fly settles on your hand while you are writing, the faint thrill which accompanies this excitation of your sensory nerve gives the specific sensation of tickling, and this causes you to move your hand with a jerk. If your attention is preoccupied, you are said to be unconscious of the sensation, and the jerk of your hand is called a reflex action; but if your attention is not preoccupied, or if the thrill is vivid, you are said to be conscious of the sensation, and the action is no longer reflex, but volitional. Obviously here the difference depends not on the sentient excitation by an impression on the nerve, but on the state of the general sensorium and its consequent reaction. Had not the impression been carried to the sensorium, no movement would have followed the fly’s alighting on your hand, because no sensation (sensory reaction) would have been excited; the hypothesis of a purely mechanical reflex is quite inadmissible.

3. Or take another case. It sometimes happens that we fall asleep while some one is reading to us aloud. The sounds of the reader’s voice at first awaken the familiar thrills which give the tones their quality, and the words their significance; but gradually as sleep steals over us, the organism ceases to react thus; the words lose more and more of their significance, the tones lose more and more of their harmonics; at last we pass into the state of unconsciousness—we cease to hear what is read. But do we cease to feel? We have not heard, but we have been affected by the sounds. Not by distinguishable sensations; nevertheless a state of the general Sensibility has been induced. To prove that we have been affected is easy. Let the reader suddenly cease, and if our sleep be not too profound, we at once awake. Now, unless the sound of his voice had affected us, it is clear that the cessation of that could not have affected us. Or let us suppose our sleep to be unbroken by the cessation of the sound; even this will not prove that we have been unaffected by the sounds, it will merely prove that those sounds, or their cessation, did not excite a conscious state. For let the reader, in no louder tone, ask, “Are you asleep?” and we start up, with round eyes, declaring, “Not at all.” Nay, should even this question fail to awaken us, the speaker need only utter some phrase likely to excite a thrill—such as, “There’s the postman!” or, “I smell fire!” and we start up.

I remember once trying the experiment on a wearied waiter, who had fallen asleep in one of the unoccupied boxes of a tavern. His arm rested on the table, and his head rested on his arm: he snored the snore of the weary, in spite of the noisy laughter and talk of the guests. I called out “Johnson,” in a loud tone. It never moved him. I then called “Wilson,” but he snored on. No sooner did I call “waiter,” than he raised his head with a sleepy “yessir.” Now, to suppose, in this case, that he had no sensation when the words “Johnson” and “Wilson” reached his ears, but had a sensation when the word “waiter” reached his ears, is to suppose that two similar causes will not produce a similar effect. The dissyllable “Johnson” would excite as potent a reaction of his sensory organ as the dissyllable “waiter”; but the thrills—the reflex feelings—were different, because the word “Johnson” was not associated in his mind with any definite actions, whereas the word “waiter” was so associated as to become an automatic impulse.231

4. Two sisters are asleep in the same bed, and a child cries in the next room. The sounds of these cries will give a similar stimulus to the auditory nerve of each sister, and excite a similar sensory reaction in each. Nevertheless, the one sister sleeps on undisturbed, and is said not to hear the cry. The other springs out of bed, and attends to the child, because she being accustomed to attend on the child and soothe it when crying, the primary sensation has excited secondary sensations, thrills which lead to accustomed actions. Could we look into the mind of the sleeping sister, we should doubtless find that the sensation excited by the child’s cry had merged itself in the general stream, and perhaps modified her dreams. Let her become a mother, or take on the tender duties of a mother, and her vigilance will equal that of her sister; because the cry will then excite a definite reflex feeling, and a definite course of action. But this very sister, who is so sensitive to the cry of a child, will be undisturbed by a much louder noise; a dog may bark, or a heavy wagon thunder along the street, without causing her to turn in bed.232 Although during sleep the nervous centres have by no means their full activity, they are always capable of responding to a stimulus, and sensation will always be produced. When the servant taps at your bedroom door in the morning, you are said not to hear the tap, if asleep; you do not perceive it; but the sound reaches and rouses you nevertheless, since when the second tap comes, although no louder, you distinctly recognize it. In etherized patients, sensation is constantly observed returning before any consciousness of what is going on returns. “I was called,” says Mr. Potter, “to give chloroform to a lady for the extraction of ten teeth. The first five were extracted without the slightest movement, but as the operation proceeded, sensation returned, and I was obliged to use considerable force to keep her in the chair during the extraction of the last tooth. She came to herself very shortly after, and was delighted to find she had got over all her troubles without having felt it the least in the world.”233

5. We do not see the stars at noonday, yet they shine. We do not see the sunbeams playing among the leaves on a cloudy day, yet it is by these beams that the leaves and all other objects are visible. There is a general illumination from the sun and stars, but of this we are seldom aware, because our attention falls upon the illumined objects, brighter or darker than this general tone. There is a sort of analogy to this in the general Consciousness, which is composed of the sum of sensations excited by the incessant simultaneous action of internal and external stimuli. This forms, as it were, the daylight of our existence. We do not habitually attend to it, because attention falls on those particular sensations of pleasure or of pain, of greater or of less intensity, which usurp a prominence among the objects of the sensitive panorama. But just as we need the daylight to see the brilliant and the sombre forms of things, we need this living Consciousness to feel the pleasures and the pains of life. It is therefore as erroneous to imagine that we have no other sensations than those which we distinctly recognize—as to imagine that we see no other light than what is reflected from the shops and equipages, the colors and splendors which arrest the eye.

The amount of light received from the stars may be small, but it is present. The greater glory of the sunlight may render this starlight inappreciable, but it does not render it inoperative. In like manner the amount of sensation received from some of the centres may be inappreciable in the presence of more massive influences from other centres; but though inappreciable it cannot be inoperative—it must form an integer in the sum.

6. The reader’s daily experience will assure him that over and above all the particular sensations capable of being separately recognized, there is a general stream of Sensation which constitutes his feeling of existence—the Consciousness of himself as a sensitive being. The ebullient energy which one day exalts life, and the mournful depression which the next day renders life a burden almost intolerable, are feelings not referable to any of the particular sensations, but arise from the massive yet obscure sensibilities of the viscera, which form so important a part of the general stream of Sensation. Some of these may emerge into distinct recognition. We may feel the heart beat, the intestines move, the glands secrete; anything unusual in their action will force itself on our attention.

“What we have been long used to,” says Whytt, “we become scarcely sensible of; while things which are new, though much more trifling, and of weaker impression, affect us remarkably. Thus he who is wont to spend his time in the country is surprisingly affected, upon first coming into a populous city, with the noise and bustle which prevail there: of this, however, he becomes daily less sensible, till at length he regards it no more than they who have been used to it all their lifetime. The same seems to be the case also with what passes within our bodies. Few persons in health feel the beating of their heart, though it strikes against their ribs with considerable force every second; whereas the motion of a fly upon one’s face or hands occasions a very sensible and uneasy titillation. The pulsation of the great aorta itself is wholly unobserved by us; yet the unusual beating of a small artery in any of the fingers becomes very remarkable.”

7. A large amount of sensation is derived from the muscular sense, yet we are not aware of the nice adjustments of the muscles, regulated by this sensibility, when we sit or walk. No sooner are we placed in an exceptional position, as in walking on a narrow ledge, than we become distinctly aware of the effort required to preserve equilibrium. It is not the novelty of the position which has increased our sensibility; that has only caused us to attend to our sensations. In like manner, the various streams of sensation which make up our general sense of existence, separately escape notice until one of them becomes obstructed, or increases in impetuosity. When we are seated at a window, and look out at the trees and sky, we are so occupied with the aspects and the voices of external Nature, that no attention whatever is given to the fact of our own existence; yet all this while there has been a massive and diffusive feeling arising from the organic processes; and of this we become distinctly aware if we close our eyes, shut off all sounds, and abstract the sensations of touch and temperature—it is then perceived as a vast and powerful stream of sensation, belonging to none of the special Senses, but to the System as a whole. It is on this general stream that depend those well-known but indescribable states named “feeling well” and “feeling ill”—the bien Être and malaise of every day. Of two men looking from the same window, on the same landscape, one will be moved to unutterable sadness, yearning for the peace of death; the other will feel his soul suffused with serenity and content: the one has a gloomy background, into which the sensations excited by the landscape are merged; the other has a happy background, on which the sensations play like ripples on a sunny lake. The tone of each man’s feeling is determined by the state of his general consciousness. Except in matters of pure demonstration, we are all determined towards certain conclusions as much by this general consciousness as by logic. Our philosophy, when not borrowed, is little more than the expression of our personality.

8. Having thus explained the relation of particular sensations to the general state of Consciousness considered as the function of the whole organism, we may henceforward speak of particular sentient states, as we speak of particular organs and functions, all the while presupposing that the organs and functions necessarily involve the organism, since apart from the organism they have no such significance. The reaction of a sensory organ is therefore always a sentient phenomenon. Apart from the living organism there can be no such vital reaction, but only a physical reaction. It is commonly supposed that sensation is simply the molecular excitation of the cerebrum; yet no one will maintain that if the cerebrum of a corpse be excited, by a galvanic current sent through the optic nerve, for instance, this excitation will be a sensation. Whence we may conclude that it is not the physical reaction or stimulus which constitutes sensation, but the physiological reaction of the living organism. 9. Now this is the point which the advocates of the Reflex Theory, implicitly or explicitly, always deny. Let us trace the origin of the fallacy, if possible. When we remove the eye from a recently killed animal, and let a beam of light fall on it, the pupil contracts. This is a purely mechanical action; no one would suggest that a sensation determined it. When we remove the leg, and irritate its nerve, the leg is jerked out. This is also a purely mechanical action. When we remove the brain from an animal, and pinch its toes, the leg is withdrawn or the pincers are pushed aside. Is this equally a purely mechanical action? And if not, why not?

The Reflex Theory would have us believe that all three cases were mechanical, at least in so far as they were all destitute of sentient co-operation, the ground for this conclusion being the hypothesis that the brain is the exclusive seat of sensation. The Reflex Theory further concludes that since these, and analogous actions, are performed when the brain is removed, they, being thus independent of sentience, may be performed when the brain is present without any co-operation of sentience. The grounds for this conclusion being the facts that in the normal state of the organism there are many actions of which we are sometimes conscious, and at other times unconscious; and some actions—such as the dilatation and contraction of the pupil—of which we are never conscious. This observation of parts detached from the organism seems confirmed by observation of actions passing in our own organisms, both converging to the conclusion that the actions in question are purely mechanical, involving no sentience whatever. We are taught, therefore, that there is besides the sentient mechanism, to which all conscious actions are referred, a reflex mechanism, to which all unconscious actions are referred. The cerebro-spinal axis, acting as a whole, constitutes the first; the spinal axis, acting without the co-operation of the cerebrum, constitutes the second.

10. Before proceeding with our exposition of the theory it may be well to state two considerations which must be constantly in view. If it should appear that there is any reasonable evidence for refusing to limit Sensibility to the cerebrum—and this evidence I shall adduce—the Reflex Theory must obviously be remodelled. Nor is this all. We might see overwhelming evidence in favor of the hypothesis that the cerebrum is the exclusive seat of Sensibility, and still reject as a fallacy the conclusion that because certain actions can be performed in the absence of the cerebrum, therefore those actions in the normal organism are likewise performed without cerebral co-operation. I mean that it is a fallacy to conclude from the contractions of the pupil, and the jerking of the leg, when eye and leg are detached from the organism, that therefore when eye and leg form integral parts of the organism, such contractions and jerkings are mechanical reflexes without sentient conditions. And the fallacy is analogous to that which would conclude from the observations of a mechanical automaton, that similar appearances in a vital organism were equally automatic and mechanical. So long as both sets of phenomena are apprehended simply as they appear to the sense of sight, they may be indistinguishable; but no sooner do we apprehend them through other modes, and examine the modes of production of the phenomena, than we come upon cardinal differences. A limb detached from the organism is like a phrase detached from a sentence: it has lost its vital significance, its functional value, in losing its connection with the other parts. The whole sentence is necessary for the slightest meaning of its constituent words, and each word is a language-element only when ideally or verbally connected with the other words required to form a sentence; without subject, predicate, and copula, no sentence can be formed. So the organic connexus of parts with a living whole is necessary for the simplest function of each organ; and a limb, or any other part, is a physiological element only when (ideally or really) an integral of a vital whole. The organism may be truncated by the removal of certain parts, as the sentence may be abbreviated by the removal of certain phrases; but so long as subject, predicate, and copula remain, there is a meaning in the sentence; and so long as the organic connexus needful for vitality remains, there will be vital function. The eye detached from the organism is no longer a part of the living whole, it no longer lives, its phenomena cease to be vital, its movements cease to have sentient conditions. The movements of the pupil may seem to be the same as those of the living eye; but when we come to examine their modes of production, we learn that they are not the same. The stimulus of light falling on the eye in the two cases necessarily has a different effect, because the effect is the result of the co-operating causes, and the co-operation in the one case is that of a lifeless organ, in the other that of a living organism. So long as the eye forms an integral part of the organism, every stimulus acting on the eye necessarily acts on the organism, and every reaction of the organ is necessarily conditioned by the state of the organism. Further, every stimulation of a sensory nerve necessarily affects the general sensorium, since the whole nervous system is structurally continuous and functionally co-operant. (See Prob. II. §16.) Therefore, the stimulation of the eye, although too faint to be discriminated as a conscious sensation, must enter as a sentient tremor into the general stream of Sentience; and although we have no test delicate enough to reveal this operation, we know the obverse operation of conscious sensation on the movements of the pupil—in surprise, for example, the pupil is dilated.

11. There are still stronger reasons for asserting that the spinal reflexes are necessarily conditioned by the general state of the sensorium, so that in the normal organism we cannot legitimately exclude them from Sentience; and the Reflex Theory is therefore unphysiological, even on the hypothesis that the cerebrum is the exclusive seat of Sensibility. This hypothesis, however, seems to me untenable; and all the observed facts which it is invented to explain admit of a far more consistent explanation. It is irrational to suppose that a limb, detached from the body, felt the stimulus which caused its muscles to contract. The limb is not a living organism, having a sentient mechanism in its nervous mechanism. Not less irrational is it to suppose that when the limb forms an integral part of a living organism, with a sentient mechanism of nerves and nerve-centres, this organism does not react on the stimulus which excites the muscles of the limb to contract; nor, pursuing the same train of reasoning, is it irrational to suppose that when this living organism has been mutilated, and certain parts destroyed, which do not in their destruction prevent the connexus of the rest, but leave intact a sentient mechanism of nerves and nerve-centres, then also this truncated organism still reacts as a whole, still feels the stimulus which causes the muscles of the limb to contract. Hypothesis for hypothesis, we may at least say that the one is as reasonable as the other. And I shall be disappointed if, when the reader has gone through all the evidence hereafter to be adduced, he does not conclude that the hypothesis which assigns Sensibility to the nervous mechanism as a whole is not the more acceptable of the two.

12. Let us now pursue our exposition of the Reflex Theory. All that we have endeavoured to establish respecting the essential identity of the processes in conscious and unconscious states, and voluntary and involuntary actions,—an identity which does not exclude differences of degree corresponding with these different terms,—is ignored or denied in the Reflex Theory. Whereas I suppose all processes to be reflex processes, some of them having the voluntary, others the involuntary character, physiologists generally distinguish the involuntary as reflex, and invent for this class a special mechanism. According to Marshall Hall, who originated the modern form of this theory, actions are divisible into four distinct classes: the voluntary, dependent on the brain; the involuntary, dependent on the irritability of the muscular fibre; the respiratory, wherein “the motive influence passes in a direct line from one point of the nervous system to certain muscles”; and the reflex, dependent on the “true spinal system” of incident-excitor nerves, and of reflex-motor nerves. These last-named actions are produced when an impression on the sensitive surface is conveyed, by an excitor-nerve, to the spinal cord, and is there reflected back on the muscles by a corresponding motor-nerve. In this process no sensation whatever occurs. The action is purely reflex, purely excito-motor—like the action of an ordinary mechanism.234

MÜller, who shares with Marshall Hall the glory of having established this classification, thinks that although the absence of sensation is a characteristic of the reflex actions, these actions may be, and are at times, accompanied by sensation. “The view I take of the matter is the following: Irritation of sensitive fibres of a spinal nerve excites primarily a centripetal action of the nervous principle conveying the impression to the spinal cord; if the centripetal action can then be continued to the sensorium commune, a true sensation is the result; if, on account of division of the cord, it cannot be communicated to the sensorium, it still exerts its whole influence upon the cord; in both cases a reflex motor action may be the result.”235

13. It is needless nowadays to point out that the existence of a distinct system of excito-motor nerves belongs to Imaginary Anatomy; but it is not needless to point out that the Imaginary Physiology founded on it still survives. The hypothetical process seems to me not less at variance with observation and induction, than the hypothetical structure invented for its basis. We have already seen that what Anatomy positively teaches is totally unlike the reflex mechanism popularly imagined. The sensory nerve is not seen to enter the spinal cord at one point, and pass over to a corresponding point of exit; it is seen to enter the gray substance, which is continuous throughout the spinal cord; it is there lost to view, its course being untraceable. Nor does the physiological process present the aspect demanded by the theory: it is not that of a direct and uniform reflexion, such as would result from an impression on one spot transmitted across the spinal cord to a corresponding motor-nerve. The impression is sometimes followed by one movement, sometimes by another very different movement, each determined by the state of neural tension in the whole central system.

Even the facts on which the Reflex Theory is based are differently interpreted by different physiologists. Van Deen, for instance, considers that Reflexion takes place without Volition, but not without Sensation; and Budge, that it takes place without perception (Vorstellung). And when it is remembered that most of the reflex actions will be accompanied by distinct consciousness whenever attention is directed to them, or the vividness of the stimulation is slightly increased, it becomes evident that the absence of Consciousness (discrimination) is not the differentia of Reflex action.

14. Nor can the absence of spontaneity be accepted as a differentia. All actions are excited by stimulation, internal or external. What are called the spontaneous actions are simply those which are prompted by internal, or by not recognizable stimuli; and could we see the process, we should see a neural change initiated by some stimulation, whether the change was conscious and volitional, or unconscious and automatic. The dog rising from sleep and restlessly moving about, is acting spontaneously, whether the stimulation which awakens him be a sensation of hunger, a sensation of sound, the sharp pain of a prick, or a dash of cold water. If he wags his tail at the sight of his master, or wags it when dreaming, the stimulation is said to be spontaneous; but if after his spinal cord has been divided the tail wags when his abdomen is tickled, the action is called reflex. In all three cases there has been a process of excitation and reflexion.

15. The advocates of the Reflex Theory insist that spontaneity is always absent in brainless animals; whence the conclusion that the brain is the exclusive organ of sensation. But the fact asserted is contradicted by the evidence. No experimenter can have failed to observe numberless examples of spontaneity in brainless animals. Many examples have already been incidentally noticed in previous pages. Let me add one more from my notes: I decapitated a toad and a triton, and divided the spinal cord of another triton and a frog. At first the movements of the decapitated animals were insignificant; but on the second day the headless toad was quite as lively as the frog; and the headless triton little less so than his companion with cord divided but brain intact. I have, at the time of writing this, a frog whose cord was divided some weeks ago. He remains almost motionless unless when touched; he is generally found in the same spot, and in the same attitude to-day as yesterday, unless touched, or unless the table be shaken. He occasionally moves one of the forelegs; occasionally one of the hind-legs; but without changing his position. If he were brainless, this quiescence would be cited in proof of the absence of spontaneity in the absence of the brain; but this conclusion would be fallacious, and is seen to be so in the spontaneous movements of his companion who has no brain.

16. With spontaneity is associated the idea of volition, and with volition choice. Now I admit that it is complicating the question to ask any one to conceive a headless animal choosing one action rather than another; but it is equally difficult to reconcile ourselves to the idea of “choice” in contemplating the actions of a mollusc. In what sense we can speak of the volition of a mollusc or an insect has already been considered (p. 408). When a man in a fit of coughing seizes a glass of water to allay the tickling in his throat, we have no hesitation in declaring this to be volitional—and the remedy to be chosen. But when a brainless animal adopts some unusual means, after the failure of the usual means, to allay an irritation, we still hesitate to call the action volitional. I see, however, no objection to calling it the adaptation of a sensitive mechanism which is markedly unlike any inorganic mechanism.

Place a child of two or three years old upon his back, and tickle his right cheek with a feather. He will probably move his head away. Continue tickling, and he will rub the spot with his right hand, never using the left hand for the right cheek, so long as the right hand is free; but if you hold his right hand, he will use the left. Does any one dispute the voluntary character of these actions?

Now compare the actions of the sleeping child under similar circumstances, and their sequence will be precisely similar. This contrast is the more illustrative, because physiologists generally assume that in sleep consciousness and volition are suspended. They say: “The brain sleeps, the spinal cord never; volition and sensation may be suspended, but not reflex action.” This proposition is extremely questionable; yet it is indispensable to the reflex theory; because unless sensation and volition are suspended during sleep, we must admit that they can act, without at the same time calling into activity that degree of sensibility which is supposed to constitute consciousness. The child moves in his sleep, defends himself in his sleep; but he is not “aware” of it.

“Children,” says PflÜger, “sleep more soundly than adults, and seem to be more sensitive in sleep. I tickled the right nostril of a three-year-old boy. He at once raised his right hand to push me away, and then rubbed the place. When I tickled the left nostril he raised the left hand. I then softly drew both arms down, and laid them close to the body, embedding the left arm in the clothes, and placing on it a pillow, by gentle pressure on which I could keep the arm down without awakening him. Having done this I tickled his left nostril. He at once began to move the imprisoned arm, but could not reach his face with it, because I held it firmly though gently down. He now drew his head aside, and I continued tickling, whereupon he raised the right hand, and with it rubbed the left nostril—an action he never performed when the left hand was free.”

17. This simple but ingenious experiment establishes one important point, namely, that the so-called reflex actions observed in sleep are determined by sensation and volition. The sleeping child behaves exactly as the waking child behaved; the only difference being in the energy and rapidity of the actions. If the waking child felt and willed, surely the sleeping child, when it performed precisely similar actions, cannot be said to have felt nothing, willed nothing? It is not at one moment a sentient organism, and at the next an insentient mechanism.

It is possible to meet this case by assuming that the child was nearly awake, and that a dim consciousness was aroused by the tickling, so that the cerebral activity was in fact awakened. But, plausible as this explanation may be (and I am the more ready to admit it because I believe the brain always co-operates when it is present), it altogether fails when we come to experiments on decapitated animals. If any one will institute a series of such experiments, taking care to compare the actions of the animal before and after decapitation, he will perceive that there is no more difference between them than between those of the sleeping and the waking child.

18. Even more striking is the following experiment, devised by PflÜger, which I have verified, and varied, many times: A frog is decapitated, or its brain is removed.236 When it has recovered from the effect of the ether, and manifests lively sensibility, we place it on its back, and touch, with acetic acid, the skin of its thigh just above the condylus internus femoris. (Let the reader imagine his own shoulder burnt at the point where it can be reached with the thumb of the same arm, and he will realize the operation.) No sooner does the acid begin to burn than the frog stretches out the other leg, so that its body is somewhat drawn towards it. The leg that has been burnt is now bent, and the back of the foot is applied to the spot, rubbing the acid away—just as your thumb might rub your shoulder. This is very like the action of the tickled child, who always uses the right hand to rub the right cheek, unless it be held; but when the child’s right hand is prevented from rubbing, the left will be employed; and precisely this do we observe with the brainless frog: prevent it from using its right leg, and it will use its left!

This has been proved by decapitating another frog, and cutting off the foot of the leg which is to be irritated. No sooner is the acid applied, than the leg is bent as before, and the stump is moved to and fro, as if to rub away the acid. But the acid is not rubbed away, and the animal becomes restless, as if trying to hit upon some other plan for freeing himself of the irritation. And it is worthy of remark that he often hits upon plans very similar to those which an intelligent human being adopts under similar circumstances. Thus, the irritation continuing, he will sometimes cease the vain efforts with his stump, and stretching that leg straight out, bends the other leg over towards the irritated spot, and rubs the acid away. But, to show how far this action is from one of “mere mechanism,” how far it is from being a direct reflex of an impression on a group of muscles, the frog does not always hit even on this plan. Sometimes it bends its irritated leg more energetically, and likewise bends the body towards it, so as to permit the spot to be rubbed against the flank—just as the child, when both his hands are held, will bend his cheek towards his shoulder and rub it there.

19. It is difficult to resist such evidence as is here manifested. The brainless frog “chooses” a new plan when the old one fails, just as the waking child chooses. And an illustration of how sensations guide and determine movements, may be seen in another observation of the brainless frog, when, as often happens, it does not hit upon either of the plans just mentioned, but remains apparently restless and helpless; if under these circumstances we perform a part of the action for it, it will complete what we have begun: if we rub the irritated leg, at some distance from the spot where the acid is, with the foot of the other, the frog suddenly avails itself of this guiding sensation, and at once directs its foot to the irritated spot.

In these experiments on the triton and the frog, the evidence of sensation and volition is all the stronger, because the reactions produced by irritations are not uniform. If when a decapitated animal were stimulated it always reacted in precisely the same way, and never chose new means on the failure of the old, it would be conceivable to attribute the results to simple reflex action—i.e. the mechanical transference of an impulse along a prescribed path. It is possible so to conceive the breathing, or the swallowing mechanism: the impression may be directly reflected on certain groups of muscles. But I cannot conceive a machine suddenly striking out new methods, when the old methods fail. I cannot conceive a machine thrown into disorder when its accustomed actions fail, and in this disorder suddenly lighting upon an action likely to succeed, and continuing that; but I can conceive this to be done by an organism, for my own experience and observation of animals assures me that this is always the way new lines of action are adopted. And this which is observed of the unmutilated animal, I have just shown to be observed of the brainless animal; wherefore the conclusion is, that if ever the frog is sentient, if ever its actions are guided by sensation, they are so when its brain is removed.

20. SchrÖder van der Kolk thinks that PflÜger was deceived in attributing sensation and volition to the frog, because the reflex actions are, he says, so nicely adapted to their ends, that they are undistinguishable from voluntary actions. The mechanism is such that, by means of the communications established between various groups of cells, all these actions adapted to an end may be excited by every stimulus. But I deny the fact. I deny that all the actions are awakened by every stimulus. Only some few are awakened, and those are not always the same, nor do they follow the same order of succession. One decapitated frog does not behave exactly like another under similar circumstances; does not behave exactly like himself at different seasons; unlike a machine, he manifests spontaneity in his actions, and volition in the direction of his actions.

21. The reader will notice that my illustrations show these actions of the brainless animal to have the same external characters as those of the unmutilated animals. I am therefore not here concerned to prove the psychical nature of these actions, unless it be granted that the unmutilated animal has sensation and volition. This of course can only be inferred, not proved. But the inference must not be allowed in the one case and refused in the other. Young rabbits and puppies when taken from their mothers manifest discomfort by restless movement and whining. Do they feel the discomfort they thus express? If ever rabbits and puppies may be said to feel, we must answer, Yes. Well, if the brain be removed from rabbits and puppies, precisely similar phenomena are observed when these young animals are taken from their mothers. “I observed the motions, which seemed the result of discomfort, quickly cease when I warmed the young rabbit by breathing on it. After a while it was completely at rest, and seemed sunk in deep sleep; occasionally, however, it moved one of its legs without any external stimulus having been applied, and this not spasmodically, but in the manner of a sleeping animal.”237 Is this cessation of the restlessness, when warmth is restored, not evidence of sensation? We see an infant restless, struggling, and squalling; and we believe that it is hungry, or that some other sensations agitate it; it is put to the breast, and its squalls subside; or a finger is placed in its mouth, and it sucks that, in a peaceful lull, for a few moments, to recommence squalling when the finger yields no satisfaction. If we accept these as signs of sensation, I do not see how we can deny such sensation to the brainless animal which will also cease to cry, and will suck the delusive finger.

22. One of the earliest advocates of the Reflex Theory sums up his observations in these words: “It is clear that brainless animals, although without sensation, because not endowed with mind, nevertheless, by means of external impressions which operate incessantly on them, perform all the acts and manifest all the activity of the sentient animal; everything that is effected sensationally and volitionally, they effect by means of the organic forces of the impressions.”238 Call Sensibility one of the organic forces, if you please, but so long as the acts performed are not only the same as those of a sentient animal, but are performed by the same mechanism, they have every claim to the character of sensational acts which can be urged in the case of these animals when the brain is present. And the only reason on which this claim is disputed is the assumed loss of all sensation with the loss of the brain. Here, therefore, lies the central point to be determined.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page