CRYSTAL COUNTERS

Previous

When we visit a crystal counter, shown under construction in Figure 8, walls of battleship steel 6 to 8 inches thick are the first things we see. Rather than using shielding only around the detecting instrument, as was done in the Geneva counter and early versions of the Los Alamos counter, crystal counters have shielding around the entire counting room. With this arrangement the instruments are available for adjustment and servicing.

This type of counter also uses a different detection device: a solid, rather than a liquid scintillator. A large crystal, usually of sodium iodide sensitized with thallium, is used to convert gamma rays to light photons.

Let us return to the shielding problem for a moment. Tanks of water, bricks, stone, and lead have been tried by scientists seeking effective, cheap, and convenient shielding. Some early counters were built deep underground in the hope of avoiding cosmic radiation. Radioactive elements are so widely distributed in the rocks, soil, water, and air, however, that there is no place where background radiation does not exist. Not even the crystals, glass, or metals used in the detection system are free of radioactivity.

Pre-World War II surplus armor plate came to be the preferred shielding material. Thick slabs of battleship steel were available after the war at low cost. Furthermore, steel produced since the war may contain unwanted radioactivity originating in fallout from nuclear tests and make it undesirable for shielding. Sometimes cobalt-60 used as a tracer to measure deterioration of blast furnace walls causes problems in postwar steel, too, so old warship armor is used when possible.

Some whole body counters have additional shielding. In the counter at the Brookhaven National Laboratory, Upton, New York, the steel room is lined with ¼-inch lead sheets, covered by thin layers of cadmium and copper. The lead is intended to absorb the secondary X rays produced in the iron by the interaction of high-energy gamma and cosmic rays. The cadmium and copper absorb the secondary radiation that is similarly produced in the lead.

The doors of these rooms often weigh 6 tons or more. A special escape hatch was built into the counter room at the University of California at Los Angeles, to be used if the main door should be jammed by an earthquake. In newer whole body counting laboratories, such as the one at the National Institutes of Health, Bethesda, Md., the steel rooms are concealed in the interior design and are so pleasantly furnished that the patient scarcely is aware of the thick walls around him.

Figure 9 A sodium iodide crystal, right, and a cluster of 7 photomultiplier tubes that fit under it to record its scintillations.

Figure 9 shows a sodium iodide crystal used to react with the gamma rays that traverse it. To the left of the crystal is a cluster of seven photomultiplier tubes that “watch” for the scintillations, convert them to electrical pulses, and amplify them so they can be sorted, counted, and recorded. A trace of thallium added to the sodium iodide improves its scintillation properties.

In addition to being of convenient size and easy to maintain, crystal detectors have another advantage over liquid systems. The energy of the incident gamma rays from crystals is more accurately indicated by the quality of the flashes of light impinging on the photomultiplier tubes. If two or more radionuclides are emitting gamma rays, a crystal detector distinguishes between their energy levels with much more precision and sensitivity than does a liquid system. Crystal instruments separate gamma rays differing by no more than 0.05 Mev.

The energies of the gamma rays emitted by nuclides have all been determined and are listed in handbooks. A scientist can thus identify the data delivered by a multichannel pulse-height analyzer as coming from potassium-40, zinc-65, or any other nuclide.

Counters using sodium iodide crystals intercept, and therefore count, a much smaller fraction of the gammas emitted by the subject’s body than liquid systems, but they also pick up a smaller amount of background. When speed is important, the liquid counter is more effective, but the crystal counter is preferred when radionuclides emitting gammas of nearly the same energies are to be separated and counted.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page