NATURAL ABRASIVES
Economic Features
Natural abrasives are less important commercially in the United States than artificial abrasives, but a considerable industry is based on the natural abrasives.
Silica or quartz in its various crystalline forms constitutes over three-fourths of the tonnage of natural abrasives used in the United States. It is the chief ingredient of sand, sandstone, quartzite, chert, diatomaceous earth, and tripoli. From the sand and sandstone are made millstones, buhrstones, grindstones, pulpstones, hones, oilstones, and whetstones. Sand, sandstone, and quartzite are also ground up and used in sand-blasts, sandpaper, and for other abrasive purposes. Chert or flint constitutes grinding pebbles and tube-mill linings, and is also ground up for abrasives. Diatomaceous (infusorial) earth is used as a polishing agent and also as a filtering medium, an absorbent, and for heat insulation. Tripoli (and rottenstone) are used in polishing powders and scouring soaps as well as for filter blocks and many other purposes.
Other important abrasives are emery and corundum, garnet, pumice, diamond dust and bort, and feldspar.
Imports of abrasive materials into the United States have about one-third of the value of those locally produced. While all of the various abrasives are represented in these imports, the United States is dependent on foreign sources for important parts of its needs only of emery and corundum, garnet, pumice, diamond dust and bort, and grinding pebbles.
Emery and corundum are used in various forms for the grinding and polishing of hard materials—steel, glass, stone, etc. The principal foreign sources of emery have been Turkey (Smyrna) and Greece (Naxos) where reserves are large and production cheap. Production of corundum has come from Canada, South Africa, Madagascar, and India. The domestic production of emery is mainly from New York and Virginia, and corundum comes from North Carolina. Domestic supplies are insufficient to meet requirements, and cannot be substituted for the foreign material for the polishing of fine glass and other special purposes. Curtailment of imports during the war greatly stimulated the development of artificial abrasives and their substitution for emery and corundum.
Garnet is used chiefly in the form of garnet paper for working leather, wood, and brass. Garnet is produced mainly in the United States and Spain. The United States is the only country using large amounts of this mineral and imports most of the Spanish output. The domestic supply comes mainly from New York, New Hampshire, and North Carolina.
Pumice is used in fine finishing and polishing of varnished and enameled surfaces, and in cleaning powders. The world's principal source for pumice is the Lipari Islands, Italy. There is a large domestic supply of somewhat lower-grade material (volcanic ash) in the Great Plains region, and there are high-grade materials in California and Arizona. Under war conditions these supplies were drawn on, but normally the high-quality Italian pumice can be placed in American markets more cheaply.
Diamond dust is used for cutting gem stones and other very hard materials, and borts or carbonadoes (black diamonds) for diamond-drilling in exploration. Most of the black diamonds come from Brazil, and diamond dust comes from South Africa, Brazil, Borneo, and India.
Chert or flint pebbles for tube-mills are supplied mainly from the extensive deposits on the French and Danish coasts. The domestic production has been small, consisting principally of flint pebbles from the California beaches, and artificial pebbles made from rhyolite in Nevada and quartzite in Iowa. War experience demonstrated the possibility of using the domestic supply in larger proportion, but the grade is such that in normal times this supply will not compete with importations.
Feldspar as an abrasive is used mainly in scouring soaps and window-wash. Domestic supplies are ample. The principal use of feldspar is in the ceramic industry and the mineral is discussed at greater length in the chapter on common rocks (p. 86).
For the large number of abrasives produced from silica, outside of flint pebbles, domestic sources of production are ample. Siliceous rocks are available almost everywhere. For particular purposes, however, rocks possessing the exact combinations of qualities which make them most suitable are in many cases distinctly localized. Millstones and buhrstones, used for grinding cereals, paint ores, cement rock, fertilizers, etc., are produced chiefly in New York and Virginia; partly because of trade prejudice and tradition, about a third of the American requirements are imported from France, Belgium, and Germany. Grindstones and pulpstones, used for sharpening tools, grinding wood-pulp, etc., come mainly from Ohio and to a lesser extent from Michigan and West Virginia; about 5 per cent of the consumption is imported from Canada and Great Britain. Hones, oilstones, and whetstones are produced largely from a rock called "novaculite" in Arkansas, and also in Indiana, Ohio, and New England; imports are negligible. Flint linings for tube-mills were formerly imported from Belgium, but American products, developed during the war in Pennsylvania, Tennessee, and Iowa, appear to be wholly satisfactory substitutes. Diatomaceous earth is produced in California, Nevada, Connecticut, and Maryland, and tripoli and rottenstone in Illinois, Missouri, and Oklahoma; domestic sources are sufficient for all needs, but due to questions of back-haul and cost of rail transportation there has been some importation from England and Germany.
Geologic Features
The geologic features of silica (quartz), feldspar, and diamonds are sufficiently indicated elsewhere (Chapter II; pp. 84, 196, 86, 291-292).
Diatomaceous earth is made up of remains of minute aquatic plants. It may be loose and powdery, or coherent like chalk. It is of sedimentary origin, accumulated originally at the bottoms of ponds, lakes, and in the sea.
Tripoli and rottenstone are light, porous, siliceous rocks which have resulted from the leaching of calcareous materials from various siliceous limestones or calcareous cherts in the process of weathering.Grinding pebbles are derived from the erosion of limestone or chalk formations which contain concretions of extremely fine-grained and dense chert. Under stream and wave action they are rounded and polished. The principal sources are ocean beaches.
Corundum as an abrasive is the mineral of this name—made up of anhydrous aluminum oxide. Emery is an intimate mechanical mixture of corundum, magnetite, and sometimes spinel. Corundum is a product of contact metamorphism and also a result of direct crystallization from molten magma. Canadian corundum occurs as a constituent of syenite and nepheline-syenite in Lower Ontario. In North Carolina and Georgia, the corundum occurs in vein-like bodies at the contact of peridotite with gneisses and schists, and also in part in the peridotite itself. In New York the emery deposits are segregations of aluminum and iron oxides in norite (a basic igneous rock). The emery of Greece and Turkey occurs as lenses or pockets in crystalline limestones, and is the result of contact metamorphism by intrusive granites.
Garnets result mainly from contact metamorphism, and commonly occur either in schists and gneisses or in marble. The principal American occurrences are of this type. Being heavy and resistant to weathering, they are also concentrated in placers. The Spanish garnets are reported to be obtained by washing the sands of certain streams.
Pumice is solidified rock froth formed by escape of gases from molten igneous rocks at the surface. It is often closely associated with volcanic ash, which is also used for abrasive purposes.
In general, the geologic processes entering into the formation of abrasives cover almost the full range from primary igneous processes to surface alterations and sedimentation.
ASBESTOS
Economic Features
The principal uses of asbestos are in high-pressure packing in heat engines, in thermal and electrical insulation, in fire-proofing, and in brake-band linings.
The largest producers of asbestos are Canada (Quebec) and, to a considerably less extent, Russia. United States interests have financial control of about a fourth of the Canadian production, and practically the entire export trade of Canada goes to the United States. Russia exports nearly all her product to Germany, Austria, United Kingdom, Belgium, and the Netherlands. Previous to the war the output was largely controlled by a German syndicate. There is a considerable recent production in South Africa, which is taken by England and the United States, and small amounts are produced in Italy, Cyprus, and Australia.
The United States has been a large importer of asbestos, from Canada and some other sources. Domestic production is relatively insignificant, and exports depend chiefly on an excess of import. Georgia is the principal local source. Arizona and California are also producers, their product being of a higher grade. The United States is the largest manufacturer of asbestos goods, and exports go to nearly all parts of the world.
So long as the abundant Canadian material is accessible on reasonable conditions, the United States is about as well situated as if independent. Some Canadian proposals of restriction during the war led to a study of other supplies and showed that several deposits, such as those in Russia and Africa, might compete with the Canadian asbestos.
Asbestos consists mostly of magnesium silicate minerals—chrysotile, anthophyllite, and crocidolite. The term asbestos covers all fibrous minerals with some tensile strength which are poor conductors and can be used for heat-protection. Like talc, they are derived principally from the alteration of olivine, pyroxene, and amphibole,—or more commonly from serpentine, which itself results from the alteration of these minerals. Chrysotile is the most common, and because of the length, fineness, and flexibility of its fibers, enabling it to be spun into asbestos ropes and fabrics, it is the most valuable. Anthophyllite fibers, on the other hand, are short, coarse, and brittle, and can be used only for lower-grade purposes. Crocidolite or blue asbestos is similar to chrysotile but somewhat inferior in fire-resisting qualities.
Asbestos deposits occur chiefly as veinlets in serpentine rock, which is itself the alteration of some earlier rock like peridotite. They are clearly formed in cracks and fissures through the agency of water, but whether the waters are hot or cold is not apparent. The veinlets have sometimes been interpreted as fillings of contraction cracks, but more probably are due to recrystallization of the serpentine, proceeding inward from the cracks. In Quebec the chrysotile asbestos (which is partly of spinning and partly of non-spinning grade) forms irregular veins of this nature in serpentine, the fiber making up 2 to 6 per cent of the rock.
In Georgia the asbestos, which is anthophyllite, occurs in lenticular masses in peridotite associated with gneiss. It is supposed to have formed by the alteration of olivine and pyroxene in the igneous rocks. In Arizona chrysotile is found in veins in cherty limestone, associated with diabase intrusives. Here it is believed to be an alteration product of diopside (lime-magnesia pyroxene) in a contact-metamorphic silicated zone.
Crocidolite is mined on a commercial scale only in Cape Colony, South Africa. The deposits occur in thin sedimentary layers interbedded with jaspers and ironstones. Their origin has not been worked out in detail.
The deposits of Russia, the Transvaal, Rhodesia, and Australia are of high-grade chrysotile, probably similar in origin to the Quebec deposits. The asbestos of Italy and Cyprus is anthophyllite, more like the Georgia material.
BARITE (BARYTES)
Economic Features
Barite is used chiefly as a material for paints. For this purpose it is employed both in the ground form and in the manufacture of lithopone, a widely used white paint consisting of barium sulphate and zinc sulphide. Ground barite is also used in certain kinds of rubber goods and in the making of heavy glazed paper. Lesser amounts go into the manufacture of barium chemicals, which are used in the preparation of hydrogen peroxide, in softening water, in tanning leather, and in a wide variety of other applications.
Germany is the world's principal producer of barite and has large reserves of high grade. Great Britain also has extensive deposits and produces perhaps one-fourth as much as Germany. France, Italy, Belgium, Austria-Hungary, and Spain produce smaller but significant amounts.Before the war the United States imported from Germany nearly half the barite consumed in this country, and produced the remainder. Under the necessities of war times, adequate domestic supplies were developed and took care of nearly all the greatly increased demands. Production has come from fourteen states, the large producers being Georgia, Missouri, and Tennessee. During the war, also, an important movement of barite-consuming industries to the middle west took place, in order to utilize more readily and cheaply the domestic product. For this reason it is not expected that German barite will play as important a part as formerly in American markets,—although it can undoubtedly be put down on the Atlantic seaboard much more cheaply than domestic barite, which requires long rail hauls from southern and middle-western states.
Geologic Features
The mineral barite is a heavy white sulphate of barium, frequently called "barytes" or "heavy spar." Witherite, the barium carbonate, is a much rarer mineral but is found with barite in some veins.
All igneous rocks contain at least a trace of barium, which is probably present in the silicates, and these small quantities are the ultimate source of the more concentrated deposits. Barite itself is not found as an original constituent of igneous rocks or pegmatites, but is apparently always formed by deposition from aqueous solutions. It is a common gangue mineral in many deposits of metallic sulphides, both those formed in relation to igneous activity and those which are independent of such activity, but in these occurrences it is of little or no commercial importance.
The principal deposits of barite are found in sedimentary rocks, and especially in limestones and dolomites. In these rocks it occurs in veins and lenses very similar in nature to the lead and zinc deposits of the Mississippi valley (p. 211 et seq.), and, like them, probably deposited by cold solutions which gathered together small quantities of material from the overlying or surrounding rocks. The Missouri deposits are found in limestones in a region not far from the great southeastern Missouri lead district, and vary from the lead deposits in relative proportions rather than in kind of minerals; the veins consist chiefly of barite, with minor quantities of silica, iron sulphide, galena, and sphalerite. The deposits of the southern Appalachians occur as lenses in limestones and schists.
Barite is little affected by surface weathering, and tends to remain behind while the more soluble minerals of the associated rock are dissolved out and carried away. A limited amount of solution and redeposition of the barite takes place, however, resulting in its segregation into nodules in the residual clays. Most of the barite actually mined comes from these residual deposits, which owe their present positions and values to katamorphic processes. The accompanying clay and iron oxide are removed by washing and mechanical concentration.
Certain investigators of the deposits of the Mississippi valley are extremely reluctant to accept the idea that the ores are formed by surface waters of ordinary temperatures, and are inclined to appeal to heated waters from a hypothetical underlying magmatic source. The fact that barite is a characteristic mineral of many igneous veins, and the fact that in this same general region it is found in the Kentucky-Illinois fluorspar deposits,—where a magmatic source is generally accepted,—together with doubts as to the theoretical efficacy of meteoric waters to transport the minerals found in the barite deposits, have led certain writers to ascribe to these barite deposits a magmatic origin. The magmatic theory has not been disproved; but on the whole the balance of evidence seems strongly to indicate that the barite deposits as well as the lead and zinc ores, which are essentially the same in nature though differing in mineral proportions, have been concentrated from the adjacent sediments by ordinary surface waters.
BORAX
Economic Features
Borax-bearing minerals are used almost entirely in the manufacture of borax and boric acid. Fully a third of the borax consumed in the United States is used in the manufacture of enamels or porcelain-like coatings for such objects as bathtubs, kitchen sinks, and cooking utensils. Other uses of borax or of boric acid are as a flux in the melting and purification of the precious metals, in decomposing chromite, in making glass, as a preservative, as an antiseptic, and as a cleansing agent. Recent developments indicate that the metal, boron, may play an important part in the metallurgy of various metals. It has been used in making very pure copper castings for electrical purposes, in aluminum bronzes, and in hardening aluminum castings; and an alloy, ferroboron, has been shown experimentally to act on steel somewhat like ferrovanadium.
The bulk of the world's borax comes from the Western Hemisphere, the United States and Chile being the two principal producers. There are additional large deposits in northern Argentina, southern Peru, and southern Bolivia, which have thus far been little drawn on because of their inaccessibility. English financial interests control most of these South American deposits.
The only large European producer of borax is Turkey. Italy and Germany produce small amounts. There has also been small production of borax in Thibet, brought out from the mountains on sheep-back.
The United States supplies of borax are sufficient for all domestic requirements and probably for export. Small quantities of boric acid are imported, but no borax in recent years. The domestic production comes entirely from California, though in the past deposits in Nevada and Oregon have also been worked.
Geologic Features
The element boron is present in various complex boro-silicates, such as datolite and tourmaline, the latter of which is used as a precious stone (pp. 290, 293). None of these are commercial sources of borax. The principal boron minerals are borax or "tincal" (hydrated sodium borate), colemanite (hydrated calcium borate), ulexite (hydrated calcium-sodium borate), and boracite (magnesium chloro-borate). Commercially the term borax is sometimes applied to all these materials. These minerals appear in nature under rather widely differing modes of origin.
The borax production of Italy is obtained from the famous "soffioni" or "fumaroles" of Tuscany. These are volcanic exhalations, in which jets of steam carrying boric acid and various borates, together with ammonium compounds, emerge from vents in the ground. The boric acid material is recovered by a process of condensation.
Borates, principally in the form of borax, occur in hot springs and in lakes of volcanic regions. The Thibet deposits, and those formerly worked at Borax Lake, California, are of this type. Certain of the hot-spring waters of the California coast ranges and of Nevada carry considerable quantities of boron, together with ammoniacal salts, and in some places they deposit borax along with sulphur and cinnabar. It seems probable (see p. 40) that these waters may come from an igneous source not far beneath.
Most of the borax deposits of California, Nevada, and Oregon, though not at present the largely producing ones, and probably most of the Chilean and adjacent South American deposits, are formed by the evaporation of desert lakes. They are products of desiccation, and in Chile are associated with the great nitrate deposits (pp. 102-104), which are of similar origin. The salts contained in these deposits are mainly borax, ulexite, and colemanite. The sources of these materials are perhaps deposits of the type mentioned in the last paragraph, or, in California, certain Tertiary borate deposits described below. Whatever their source, the borates are carried in solution by the waters of occasional rains to shallow basins, which become covered with temporary thin sheets of water or "playa lakes." Evaporation of these lakes leaves broad flats covered with the white salts. These may subsequently be covered with drifting sands and capillary action may cause the borates to work up through the sands, becoming mixed with them and efflorescing at the surface. One of the largest of the California deposits of this general class is that at Searles Lake, from which it has been proposed to recover borax along with the potash (pp. 113-114).
The deposits which at present constitute the principal source of domestic borax are not the playa deposits just described, but are masses of colemanite in Tertiary clays and limestones with interbedded basaltic flows. The principal deposits are in Death Valley and adjacent parts of California. The colemanite occurs in irregular milky-white layers or nodules, mingled with more or less gypsum. The deposits are believed to be of the replacement type, rather than ones formed contemporaneously with the sediments. Whether they are due to magmatic solutions carrying boric acid from the associated flows, or to surface waters carrying materials leached from other sediments, is not clear. The crude colemanite as mined carries an average of about 25 per cent B_2O_3; it is treated with soda in the manufacture of borax, or with sulphuric acid in making boric acid.
Boron is present in minute quantities in sea water. When such water evaporates, it becomes concentrated, along with the magnesium and potassium salts, in the "mother liquor"; and upon complete evaporation, it crystallizes out as boracite and other rarer minerals. Thus the Stassfurt salts of Germany (p. 113) contain borates of this type in the carnallite zone of the upper part of the deposits. This is the only important case known of borate deposits of marine origin.
BROMINE
Economic Features
Bromine finds a considerable use in chemistry as an oxidizing agent, in separating gold from other metals, and in manufacturing disinfectants, bromine salts, and aniline colors. The best known and most widely used bromine salts are the silver bromide, used in photography, and the potassium bromide, used in medicine to depress the nervous system. During the war, large quantities of bromine were used in asphyxiating and lachrymating gases.
The chief center of the bromine industry in Europe prior to 1914 was Stassfurt, Germany. No other important commercial source in foreign countries is known, though small quantities have been obtained from the mother liquors of Chile saltpeter and from the seaweed, kelp, in various countries. India has been mentioned as a possible large producer in the future.
The United States is independent of foreign sources for bromine. The entire domestic tonnage is produced from brines pumped in Michigan, Ohio, West Virginia, and Pennsylvania. A large part of the output is not actually marketed as bromine, but in the form of potassium and sodium bromides and other salts. During the war considerable quantities of bromine materials were exported to Great Britain, France, and Italy.
Geologic Features
Bromine is very similar chemically to chlorine, and is found under much the same conditions, though usually in smaller quantities. The natural silver bromide (bromyrite) and the combined silver chloride and bromide (embolite) are fairly common in the oxide zones of silver ores, but are not commercial sources of bromine.
Bromine occurs in sea water in appreciable amounts, as well as in some spring waters and many natural brines. When natural salt waters evaporate, bromine is one of the last materials to be precipitated, and the residual "mother liquors" or bitterns frequently show a considerable concentration of the bromine. Where complete evaporation takes place, as in the case of the Stassfurt salt deposits (p. 113), the bromine salts are crystallized out in the final stages along with the salts of sodium, magnesium, and potassium. The larger part of the world's bromine has come from the mother liquor resulting from the solution and fractional evaporation of these Stassfurt salts.
The bromine obtained from salt deposits in the eastern United States is doubtless of a similar origin. It is produced as a by-product of the salt industry, the natural or artificial brines being pumped from the rocks (p. 295), and the bromides being extracted either from the mother liquors or directly from the unconcentrated brines.
FULLER'S EARTH
Economic Features
Fuller's earth is used chiefly for bleaching, clarifying, or filtering mineral and vegetable oils, fats, and greases. The petroleum industry is the largest consumer. Minor uses are in the manufacture of pigments for printing wall papers, in detecting coloring matters in certain food-products, and as a substitute for talcum powder.
Fuller's earths are in general rather widely distributed. The principal producers are the United States, England, and the other large consuming countries of Europe. The only important international trade in this commodity consists of exports from the United States to various countries for treating mineral oils, and exports from England for treating vegetable oils.There is a large surplus production in the United States of fuller's earth of a grade suitable for refining mineral oils, but an inadequate production of material for use in refining edible oils, at least by methods and equipment now in most general use. However, the imports needed from England are more than offset by our exports to Europe of domestic earth particularly adapted to the petroleum industry. Production in the United States comes almost entirely from the southern states; Florida produces over three-fourths of the total and other considerable producers are Texas, Georgia, California, and Arkansas. Imports from England are normally equivalent to about a third of the domestic production.
Geologic Features
Fuller's earth is essentially a variety of clay having a high absorptive power which makes it useful for decolorizing and purifying purposes. Fuller's earths are in general higher in water content and have less plasticity than most clays, but they vary widely in physical and chemical properties. Chemical analyses are of little value in determining whether a given clay will serve as fuller's earth, and an actual test is the only trustworthy criterion.
Deposits of fuller's earth may occur under the same variety of conditions as deposits of other clays. The deposits of Florida and Georgia consist of beds in slightly consolidated flat-lying Tertiary sediments, which are worked by open cuts. The Arkansas deposits are residual clays derived from the weathering of basic igneous rocks, and are worked through shafts.
GRAPHITE (PLUMBAGO)
Economic Features
Crystalline graphite is used principally in the manufacture of crucibles for the melting of brass, bronze, crucible steel, and aluminum. About 45 per cent of the quantity and 70 per cent of the value of all the graphite consumed in the United States is employed in this manner. Both crystalline and amorphous graphite are used in lubricants, pencils, foundry facings, boiler mixtures, stove-polishes and paint, electrodes, and fillers or adulterants for fertilizers. The most important use of amorphous graphite is for foundry facings, this application accounting for about 25 per cent of the total United States consumption of graphite of all kinds. Artificial graphite is not suitable for crucibles or pencils but is adapted to meet other uses to which natural graphite is put. It is particularly adapted to the manufacture of electrodes.
The grade of graphite deposits varies widely, their utilization being largely dependent on the size of the grains and the ease of concentration. Some of the richest deposits, those of Madagascar, contain 20 per cent or more of graphite. The United States deposits contain only 3 to 10 per cent. The graphite situation is complicated by the differences in the quality of different supplies. Crucibles require coarsely crystalline graphite, but pencils, lubricants, and foundry facings may use amorphous and finely crystalline material.
The largest production of high-grade crucible graphite has come from Ceylon, under British control, and about two-thirds of the output has come to the United States. The mines are now worked down to water-level and costs are increasing.
In later years a rival supply has come from the French island of Madagascar, where conditions are more favorable to cheap production, and where reserves are very large. French, British, and Belgian interests are concerned in the development of these deposits. The quality of graphite is different from the Ceylon product; it has not found favor in the United States but is apparently satisfactory to crucible makers in Europe. Most of the output is exported to Great Britain and France, and smaller amounts to Germany and Belgium.
Less satisfactory supplies of crystalline graphite are available in many countries, including Bavaria, Canada, and Japan. Large deposits of crystalline material have been reported in Greenland, Brazil, and Roumania, but as yet have assumed no commercial importance.
Amorphous graphite is widely distributed, being produced in about twenty countries,—chiefly in Austria, Italy, Korea, and Mexico. Certain deposits have been found to be best for special uses, but most countries could get along with nearby supplies.
A large part of the world's needs of crucible graphite will probably continue to be met from Ceylon and Madagascar, while a large part of the amorphous graphite will come from the four sources mentioned.
The United States has been largely dependent upon importations from Ceylon for crucible graphite. Domestic supplies are large and capable of further development, but for the most part the flake is of such quality that it is not desired for crucible manufacture without large admixture of the Ceylon material. Restrictions during the war required crucible makers to use at least 20 per cent of domestic or Canadian graphite in their mixtures, with 80 per cent of foreign graphite. This created a demand for domestic graphite which caused an increased domestic output. Most of the production in the United States comes from the Appalachians, particularly from Alabama, New York, and Pennsylvania, and smaller amounts are obtained from California, Montana, and Texas. One of the permanently beneficial effects of the war was the improvement of concentrating practice and the standardization of output, to enable the domestic product to compete more effectively with the well-standardized imported grades. Whether the domestic production will hold its own with foreign competition under peace conditions remains to be seen. Domestic reserves are large but of low grade.
The Madagascar graphite, in the shape and size of the flakes, is more like the American domestic graphite than the Ceylon product. Small amounts have been used in this country, but American consumers appear in general to prefer the Ceylon graphite in spite of its greater cost. The Madagascar product can be produced and supplied to eastern United States markets much more cheaply than any other large supply; and, in view of the possible exhaustion of the Ceylon deposits, it may be desirable for American users to adapt crucible manufacture to the use of Madagascar material as has already apparently been done in Europe.
Expansion of the American graphite industry during the war, and its subsequent collapse, have resulted in agitation for a duty on imports of foreign graphite.
Amorphous graphite is produced from some deposits in the United States (Colorado, Nevada, and Rhode Island), but the high quality of Mexican graphite, which is controlled by a company in the United States, makes it likely that imports from this source will continue. Since the war the Mexican material has practically replaced the Austrian graphite in American markets. The output of Korea is divided between the United States and England.
Artificial graphite, in amounts about equal to the domestic production of amorphous graphite, is produced from anthracite or petroleum coke at Niagara Falls.
Geologic Features
The mineral graphite is a soft, steel-gray, crystalline form of carbon.
Ceylon graphite occurs in veins and lenses cutting gneisses and limestones. Usually the veins consist almost entirely of graphite, but sometimes other minerals occur in important amounts, especially pyrite and quartz. The association of graphite with these minerals, and also with feldspar, pyroxene, apatite, and other minerals, suggests that the veins are of igneous origin, like some of the pegmatite veins in the Adirondacks of New York. The graphite is mined from open pits and shafts, and sorted by hand and mechanically. The product consists of angular lumps or chips with a relatively small amount of surface in proportion to their volume.
In Madagascar the graphite is mainly disseminated in a graphitic schist, though to some extent it is present in the form of veins and in gneiss. Most of the graphite is mined from a weathered zone near the surface, and the material is therefore soft and easily concentrated. The product is made up of flakes or scales, and in the making of crucibles requires the use of larger amounts of clay binder than the Ceylon graphite.
The flake graphite of the United States, principally in the Appalachian region, occurs in crystalline graphitic schists, resulting from the anamorphism of sedimentary rocks containing organic matter. Certain beds or zones of comparatively narrow width carry from 3 to 10 per cent of disseminated graphite. The graphite is recovered by mechanical processes of sorting. The graphite is believed to be of organic origin, the change from organic carbon to graphite having been effected by heat and pressure accompanying mountain-building stresses. Some of the graphite also occurs in pegmatite intrusives and adjacent wall rocks. This graphite is considered to be of inorganic origin, formed by the breaking up of gaseous oxides of carbon in the original magma of the pegmatites. The Montana graphite is similar in origin. This inorganic graphite in pegmatite veins resembles Ceylon graphite, in breaking into large lumps and chips, but supplies are very limited.
Amorphous graphite is formed in many places where coal and other carbonaceous materials have undergone extreme metamorphism. It represents simply a continuation in the processes by which high grade coals are formed from plant matter (pp. 123-127). The Mexican deposits are of this type, and occur in beds up to 24 feet in thickness interbedded with metamorphosed sandstones.
In general, graphite is primarily concentrated both by igneous processes in dikes, and by sedimentary processes in beds. In the latter case anamorphism is necessary to recrystallize the carbon into the form of graphite.
GYPSUM
Economic Features
The principal use of gypsum is in structural materials. About two-thirds of the gypsum produced in the United States is used in the manufacture of various plasters—wall plaster, plaster of Paris, and Keene's cement (for statuary and decorative purposes),—and about a fifth is used as a retarder in Portland cement. Another important structural use is in the manufacture of plaster boards, blocks, and tile for interior construction. Gypsum is used as a fertilizer under the name of "land plaster," and with the growing recognition of the lack of sulphur in various soils an extension of its application is not unlikely. Minor uses are in the polishing of plate glass, in the manufacture of dental plaster, in white pigments, in steampipe coverings, and as a filler in cotton goods.
The world's gypsum deposits are widely distributed. Of foreign countries, France, Canada, and the United Kingdom are the principal producers. Germany, Algeria, and India produce comparatively meager amounts. The United States is the largest producer of gypsum in the world. In spite of its large production, the United States normally imports quantities equivalent to between one-fifteenth and one-tenth of the domestic production, mainly in the crude form from Nova Scotia and New Brunswick for consumption by the mills in the vicinity of New York. This material is of a better grade than the eastern domestic supply, and is cheaper than the western supply for eastern consumption. During the war this importation was practically stopped because of governmental requisition of the carrying barges for the coal-carrying trade, but with the return of normal conditions it was resumed. There is no prospect of importation of any considerable amount from any other sources. The domestic supply is ample for all demands.
Production of gypsum in the United States comes from eighteen states. Four-fifths of the total comes from New York, Iowa, Michigan, Ohio, Texas, and Oklahoma. There are extensive deposits in some of the western states, the known reserves in Wyoming alone being sufficient for the entire world demands for many decades.
The United States exports a small amount of crude gypsum to Canada, principally for use in Portland cement manufacture. This exportation is due to geographic location. The United States is the largest manufacturer of plaster boards, insulating materials, and tile, and exports large quantities of these products to Cuba, Australia, Japan, and South America.
Geologic Features
Gypsum is a hydrated calcium sulphate. It is frequently associated with minor quantities of anhydrite, which is calcium sulphate without water, and under the proper natural conditions either of these materials may be changed into the other.
Common impurities in gypsum deposits include clay and lime carbonate, and also magnesia, silica, and iron oxide. In the material as extracted, impurities may range from a trace to about 25 per cent. Gypsite, or gypsum dirt, is an impure mixture of gypsum with clay or sand found in Kansas and some of the western states; it is believed to have been produced in the soil or in shallow lakes, by spring waters carrying calcium sulphate which was leached from gypsum deposits or from other rocks.
Gypsum deposits, like deposits of common salt, occur in beds which are the result of evaporation of salt water. Calcium makes up a small percentage of the dissolved material in the sea, and when sea waters are about 37 per cent evaporated it begins to be precipitated as calcium sulphate. Conditions for precipitation are especially favorable in arid climates, in arms of the sea or in enclosed basins which may or may not once have been connected with the sea. Simultaneously with the deposition of gypsum, there may be occasional inwashings of clay and sand, and with slight changes of conditions organic materials of a limey nature may be deposited. Further evaporation of the waters may result in the deposition of common salt. Thus gypsum beds are found interbedded with shales, sandstones, and limestones, and frequently, but not always, they are associated with salt beds. The nature of these processes is further discussed under the heading of salt (pp. 295-298).
The anhydrite found in gypsum deposits is formed both by direct precipitation from salt water and by subsequent alteration of the gypsum. The latter process involves a reduction of volume, and consequently a shrinkage and settling of the sediments. The hydration of anhydrite to form gypsum, on the other hand, involves an increase of volume and may result in the doming up and shattering of the overlying sediments.
Gypsum is fairly soluble in ground-water, and sink-holes and solution cavities are often developed in gypsum deposits. These may allow the inwash of surface dirt and also may interfere with the mining.
All the important commercial gypsum deposits are believed to have been formed by evaporation of salt water in the manner indicated. Small quantities of gypsum are formed also when pyrite and other sulphides oxidize to sulphuric acid and this acid acts on limestone. Thus gypsum is found in the oxide zones of some ore bodies. These occurrences are of no commercial significance.
MICA
Economic Features
The principal use of sheet mica is for insulating purposes in the manufacture of a large variety of electrical equipment. The highest grades are employed particularly in making condensers for magnetos of automobile and airplane engines and for radio equipment, and in the manufacture of spark plugs for high tension gas engines. Sheet mica is also used in considerable amounts for glazing, for heat insulation, and as phonograph diaphragms. Ground mica is used in pipe and boiler coverings, as an insulator, in patent roofing, and for lubricating and decorative purposes.
India, Canada, and the United States are the important sheet mica-producing countries, before the war accounting for 98 per cent of the world's total. India has long dominated the sheet mica markets of the world, and will probably continue to supply the standard of quality for many years. The bulk of the Indian mica is consumed in the United States, Great Britain, and Germany. The mica of India and the United States is chiefly muscovite. Canada is the chief source of amber mica (phlogopite), though other deposits of potential importance are known in Ceylon and South Africa. Canadian mica is produced chiefly in Quebec and Ontario, and is exported principally to the United States.
Important deposits of mica (principally muscovite) are also known in Brazil, Argentina, and German East Africa. Large shipments were made from the two former countries during the war, both to Europe and the United States, and Brazil particularly should become of increasing importance as a producer of mica. The deposits in German East Africa were being quite extensively developed immediately before the war and large shipments were made to Germany in 1913.
The United States is the largest consumer of sheet mica and mica splittings, absorbing normally nearly one-half of the world's production. Approximately three-fifths of this consumption is in the form of mica splittings, most of which are made from muscovite in India and part from amber mica in Canada. Due to the cheapness of labor in India and the amenability of Indian mica to the splitting process, India splittings should continue to dominate the market in this country. Amber mica is a variety peculiarly adapted to certain electrical uses. There are no known commercial deposits of this mica in the United States, but American interests own the largest producing mines in Canada. Shipments of Brazilian mica are not of such uniformly high quality as the Indian material, but promise to become of increasing importance in American markets.
Of the sheet mica consumed annually, the United States normally produces about one-third. War conditions, although stimulating the production of domestic mica very considerably, did not materially change the situation in this country as regards the dependence of the United States on foreign supplies for sheet mica.
About 70 per cent of the domestic mica comes from North Carolina and 25 per cent from New Hampshire. The deposits are small and irregular, and mining operations are small and scattered. These conditions are largely responsible for the heterogeneous nature of the American product. It is hardly possible for any one mine to standardize and classify its product, although progress was made in this direction during the war by the organization of associations of mica producers. This lack of standardization and classification is a serious handicap in competition with the standard grades and sizes which are available in any desired amounts from foreign sources.
For ground mica, the domestic production exceeds in tonnage the total world production of sheet mica, and is adequate for all demands.
Geologic Features
Mica is a common rock mineral, but is available for commerce only in igneous dikes of a pegmatite nature, where the crystallization is so coarse that the mica crystals are exceptionally large. Muscovite mica occurs principally in the granitic pegmatite dikes. The phlogopite mica of Canada occurs in pyroxenite dikes. The distribution of mica within the dikes is very erratic, making predictions as to reserves hazardous. The associated minerals, mainly quartz and feldspar, are ordinarily present in amounts greater than the mica. Also, individual deposits are likely to be small. For these reasons mining operations cannot be organized on a large scale, but are ordinarily hand-to-mouth operations near the surface. A large amount of hand labor is involved, and the Indian deposits are favored by the cheapness of native labor. The output of a district is from many small mines rather than from any single large one.
Pegmatites which have been subjected to dynamic metamorphism are often not available as a source of mica, because of the distortion of the mica sheets.
The mining of a mica is facilitated by weathering, which softens the associated feldspar, making it an easier task to take out the mica blocks. On the other hand, iron staining by surface solutions during weathering may make the mica unfit for electrical and certain other uses.
Scrap or ground mica is obtained as a by-product of sheet mica and from deposits where the crystals are not so well developed. Black mica (biotite) and chlorite minerals, which are soft and flexible but not elastic and are found extensively developed in certain schists, have been used to a limited extent for the same purposes.
MONAZITE (THORIUM AND CERIUM ORES)
Economic Features
The mineral monazite is the source of the thorium and cerium compounds which, glowing intensely when heated, form the light-giving material of incandescent gas mantles. Welsbach mantles consist of about 99 per cent thorium oxide and 1 per cent cerium oxide. Cerium metal, alloyed with iron and other metals, forms the spark-producing alloys used in various forms of gas lighters and for lighting cigars, cigarettes, etc. Mesothorium, a by-product of the manufacture of thorium nitrate for gas mantles, is used as a substitute for radium in luminous paints and for therapeutic purposes. The alloy ferrocerium is used to a small extent in iron and steel.
The world's supply of monazite is obtained mainly from Brazilian and Indian properties. Before the war German commercial interests controlled most of the production, as well as the manufacture of the thorium products. During the war German control was broken up.
The United States has a supply of domestic monazite of lower grade than the imports, but is dependent under normal conditions on supplies from Brazil and India. The American deposits are chiefly in North and South Carolina, and have been worked only during periods of abnormally high prices or of restriction of imports. Known reserves are small and the deposits will probably never be important producers. During the war, however, the United States became the largest manufacturer of thorium nitrate and gas mantles and exported these products in considerable quantity. An effort is now being made to secure protective legislation against German thorium products.
Geologic Features
Monazite is a mineral consisting of phosphates of cerium, lanthanum, thorium, and other rare earths in varying proportions. The content of thorium oxide varies from a trace up to 30 per cent, and commercial monazite sands are usually mixed so as to bring the grade up to at least 5 per cent.
Yellowish-brown crystals of monazite have been found scattered through granites, gneisses, and pegmatites, but in quantities ordinarily too small to warrant mining. In general the mineral is recovered on a commercial scale only from placers, where it has been concentrated along with other dense, insoluble minerals such as zircon, garnet, ilmenite, and sometimes gold. The Indian and Brazilian monazite is obtained principally from the sands of ocean beaches, in the same localities from which zircon is recovered (p. 189). The North and South Carolina monazite has been obtained chiefly from stream beds, and to a slight extent by mining and washing the rotted underlying rock, which is a pegmatized gneiss. Monazite, together with a small amount of gold, is also known in the stream gravels of the Boise Basin, Idaho, where a large granitic batholith evidently carries the mineral sparsely distributed throughout. These deposits have not been worked.
PRECIOUS STONES
Economic Features
Precious stones range high in the world's annual production of mineral values. A hundred or more minerals are used to some degree as precious stones; but those most prized, representing upwards of 90 per cent of the total production value, are diamond, pearl, ruby, sapphire, and emerald. In total value the diamonds have an overwhelming dominance. Over a ton of diamonds is mined annually.
Diamonds come mainly from South Africa, which produces over 99 per cent of the total. Pearls come chiefly from the Indian and Pacific oceans. Burma is the principal source of fine rubies. Siam is the principal producer of sapphires. Colombia is the principal source of fine emeralds.The United States produces small amounts of sapphires (in Montana) and pearls (from fresh-water molluscs). Diamonds, rubies, and emeralds are practically absent on a commercial scale. Of other precious and semi-precious gem stones produced in the United States, the principal ones are quartz, tourmaline, and turquoise.
On the other hand, the United States absorbs by purchase over half of the world's production of precious stones. It is estimated roughly that there are now in the United States nearly one billion dollars' worth of diamonds, or over one-half of the world's accumulated stock, and probably the proportions for the other stones are not far different.
Value attaches to a precious stone because of its qualities of beauty, coupled with endurance and rarity, or because of some combination of these features which has caught the popular fancy. No one of these qualities is sufficient to make a stone highly prized; neither does the possession of all of them insure value. Some beautiful and enduring stones are so rare that they are known only to collectors and have no standard market value. Others fail to catch the popular fancy for reasons not obvious to the layman. While the intrinsic qualities go far in determining the desirability of a stone, it is clear that whim and chance have been no small factors in determining the demand or lack of demand for some stones. As in other minerals, value has both its intrinsic and extrinsic elements.
For the leading precious stones above named, the values are more nearly standard throughout the world than for any other minerals, with the exception of gold and possibly platinum. Highly prized everywhere and easily transported, the price levels show comparatively little variation over the world when allowance is made for exchange and taxes. The valuation of precious stones is a highly specialized art, involving the appraisal not only of intrinsic qualities, but of the appeal which the stone will make to the buying public. In marking a sale price for some exceptional stone not commonly handled in the trade, experts in different parts of the world often reach an almost uncanny uniformity of opinion.
It is estimated that the world stock of precious stones approximates three billion dollars, or a third of the world's monetary gold reserve. Because of small bulk and standard value, this wealth may be easily secreted, carried, and exchanged. When the economic fabric of civilization is disturbed by war or other conditions, precious stones become a medium of transfer and exchange of wealth of no inconsiderable importance.
The beauty of a stone may arise from its color or lack of color, from its translucency or opaqueness, from its high refraction of light, and from the manner of cutting and polishing to bring out these qualities. Hardness and durability are desirable qualities. The diamond is the hardest known mineral and the sapphire, ruby, and emerald rank high in this regard. On the other hand the pearl is soft and fragile and yet highly prized.
Geologic Features
The principal precious stones above named are of simple composition. Diamond is made of carbon; the pearl is calcium carbonate; ruby and sapphire are aluminum oxide—varieties of the mineral corundum; the emerald is silica and alumina, with a minor amount of beryllia. Minute percentages of chromite, iron, manganese, and other substances are often responsible for the colors in these stones. Carbon also constitutes graphite and is the principal element in coal. Lime carbonate is the principal constituent of limestone and marble. Alumina is the principal constituent of bauxite, the ore of aluminum, and of the natural abrasives, emery and corundum. Silica, the substance of common quartz, also constitutes gem quartz, amethyst, opal, agate, onyx, etc.
Most of the world's diamonds come from the Kimberley and Transvaal fields of South Africa, where they are found in a much decomposed volcanic rock called "blue ground." This is a rock of dull, greasy appearance consisting largely of serpentine. It was originally peridotite, occurring in necks or plugs of old volcanoes penetrating carbonaceous sediments. When the rock is mined and spread at the surface, it decomposes in the course of six months or a year, allowing it to be washed and mechanically sorted for its diamond content. The amount of ground treated in one of the large mines is about equal to that handled in operating the huge porphyry copper deposit of Bingham, Utah; the annual production of diamonds from the same mine could be carried in a large suit-case.The diamonds were clearly formed at high temperatures and pressures within the igneous rocks. It has been suggested that the igneous magma may have secured the carbon by the melting of carbonaceous sediments through which it penetrated, but proof of this is difficult to obtain. Artificial diamonds of small size have been made in the electric furnace under high-pressure conditions not unlike those assumed to have been present in nature.
Weathering and transportation of rocks containing diamonds have resulted in the development of diamond-bearing placers. The South African diamonds were first found in stream placers, leading to a search for their source and its ultimate discovery under a blanket of soil which completely covered the parent rock. The proportion of diamonds now mined from placers is very small.
The diamonds of Brazil come from placer deposits. This is the principal source of the black diamond so largely used in diamond-drilling.
The United States produces no diamonds on a commercial scale. Small diamonds have been found in peridotite masses in Pike County, Arkansas, but these are of very little commercial value. A few diamonds have been found in the glacial drift of Wisconsin and adjacent states, indicating a possible diamond-bearing source somewhere to the north which has not yet been located (p. 317).
Pearls are concretions of lime carbonate of organic origin, and are found in the shells of certain species of molluscs. Their color or luster is given by organic material or by the interior shell surface against which the pearl is formed. The principal supply comes from the Indian and Pacific Oceans, but some are found in the fresh water mussels of North America, in the Caribbean, and on the western coast of Mexico and Central America.
From the beginning of history the principal source of rubies has been upper Burma, where the stones are found in limestone or marble near the contact with igneous rocks, associated with high-temperature minerals. The weathering of the rock has developed placers from which most of the rubies are recovered. Siam is also an important producer. In the United States rubies have been found in pegmatites in North Carolina, but these gems are of little commercial importance.Sapphires are of the same composition as rubies and are found in much the same localities. Most of the sapphires of the best quality come from Siam, where they are found in sandy clay of placer origin. In the United States sapphires are recovered from alluvial deposits along the Missouri River near Helena, Montana, where they are supposed to have been derived from dikes of andesite rocks. In Fergus County, Montana, they are mined from decomposed dikes of lamprophyre (a basic igneous rock). In North Carolina sapphire has been found in pegmatite dikes.
The principal source of fine emeralds is in the Andes in Colombia. Their occurrence here is in calcite veins in a bituminous limestone, but little seems to be known of their origin. The only other emerald locality of commercial importance is in the Ural Mountains of Siberia. Emeralds have been found in pegmatite dikes in North Carolina and New England, but the production is insignificant.
Tourmaline is a complex hydrous silicate of aluminum and boron, with varying amounts of magnesium, iron, and alkalies. It is a rather common mineral in silicated zones in limestones near igneous contacts, but gem tourmalines are found principally in pegmatite dikes. They have a wide variety of colors, the red and green gems being the most prized. Maine, California, and Connecticut are the principal American producers.
Turquoise is a hydrated copper-aluminum phosphate. It is found in veinlets near the surface in altered granites and other igneous rocks. It is usually associated with kaolin and frequently with quartz, and is believed to have been formed by surface alterations. In the United States it is produced chiefly in Nevada, Arizona, and Colorado.
In general the principal gem minerals, except pearl and turquoise, occur as original constituents in igneous intrusives, usually of a pegmatite or peridotite nature. Sapphire, ruby, emerald, and tourmaline result also from contact metamorphism of sediments in the vicinity of igneous rocks. Weathering softens the primary rocks, making it possible to separate the gem stones from the matrix. When eroded and transported the gems are concentrated in placers.
SALT
Economic Features
The principal uses of salt are in the preserving and seasoning of foods and in chemical industries. Chemical industries require salt for the manufacture of many sodium compounds, and also as a source of hydrochloric acid and chlorine. A minor use of salt is in the making of glazes and enamel on pottery and hardware.
Because of the wide distribution of salt in continental deposits and because of the availability of ocean and salt-lake brines as other sources, most countries of the world either possess domestic supplies of salt adequate for the bulk of their needs, or are able to obtain supplies from nearby foreign countries. Certain sea salts preferred by fish packers and other users are, however, shipped to distant points. About a fifth of all the salt consumed in the world annually is produced in the United States, and other large producers are Great Britain, Germany, Russia, China, India, and France.
The United States produces almost its entire consumption of salt, which is increasing at a very rapid rate. Salt is produced in fourteen states, but over 85 per cent of the total output comes from Michigan, New York, Ohio, and Kansas. Reserves are practically inexhaustible.
Exports and imports of salt form a very minor part of the United States industry, each being equivalent to less than 5 per cent of the domestic production. A large part of the imported material is coarse solar-evaporated sea salt, which is believed by fish and pork packers to be almost essential to their industry. Imports of this salt come from Spain, Italy, Portugal, and the British and Dutch West Indies; during the war, on account of ship shortage, they were confined chiefly to the West Indies. A considerable tonnage of specially prepared kiln-dried salt, desired by butter-makers, is imported from Liverpool, England. There are also some small imports from Canada, probably because of geographic location. Exports of domestic salt go chiefly to Canada, Cuba, and New Zealand, with smaller amounts to practically all parts of the world.
Salt is recovered from salt beds in two ways. About a fourth of the salt produced in the United States is mined through shafts in the same manner as coal, the lumps of salt being broken and sized just as coal is prepared for the market. The larger part of the United States production, however, is derived by pumping water down to the beds to dissolve the salt, and pumping the resulting brine to the surface where it is then evaporated. A considerable amount of salt, also, is recovered from natural brines—which represent the solution of rock salt by ground-waters—and from the waters of salt lakes and the ocean.
Geologic Features
Common salt constitutes the mineral halite, the composition of which is sodium chloride. It is rarely found perfectly pure in nature, but is commonly mixed with other saline materials, such as gypsum and anhydrite, and occasionally with salts of potassium and magnesium. The general grade of rock-salt deposits, where not admixed with clay, is perhaps 96 to 99 per cent of sodium chloride.
The ultimate source of salt deposits is the sodium and chlorine of igneous rocks. In the weathering of these rocks the soda, being one of the more soluble materials, is leached out and carried off by ground-waters, and in the end a large part of it reaches the sea. The chlorine follows a similar course; however, the amount of chlorine in ordinary igneous rocks is so extremely small that, in order to explain the amount of chlorine present in the sea, it has been thought necessary to appeal to volcanic emanations or to some similar agency. Ocean water contains about 3.5 per cent by weight of dissolved matter, over three-fourths of which consists of the constituents of common salt. Chief among the other dissolved materials are magnesium, calcium, potassium, and SO_4 (the sulphuric acid radical).
When sea water evaporates it becomes saturated with various salts, according to the amounts of these salts present and their relative solubilities. In a general way, after 37 per cent of the water has evaporated gypsum begins to separate out, and after 93 per cent has evaporated common salt begins to be deposited. After a large part of the common salt has been precipitated, the residual liquid, called a "bittern" or "mother liquid," contains chiefly a concentration of the salts of magnesium and potassium. Still further evaporation will result in their deposition, mainly as complex salts like those found in the Stassfurt deposit (p. 113).
The actual processes of concentration and precipitation in sea water or other salt waters are much more complex than is indicated by the above simple outline. The solubility of each of the various salts present, and consequently the rate at which each will crystallize out as evaporation proceeds, depends upon the kinds and concentrations of all the other salts in the solution. Temperature, pressure, mass-action, and the crystallization of double salts are all factors which influence the nature and rate of the processes and add to their complexity. During a large part of the general process, several different salts may be crystallizing out simultaneously. It is evident that gypsum may be precipitated in some quantity, and that external conditions may then change, so that evaporation ceases or so that the waters are freshened, before any common salt is crystallized out. This fact may explain in part why gypsum beds are more widely distributed than beds of common salt. At the same time the much greater amount of sodium chloride than of calcium sulphate in sea water may explain the greater thickness of many individual salt beds.
The evaporation of salt waters, either from the ocean or from other bodies of water, is believed to have been responsible for nearly all of the important deposits of common salt. This process has been going on from Cambrian time down through all the intervening geologic ages, and can be observed to be actually operative today in various localities. The beds of salt so formed are found interstratified with shales, sandstones, and limestones, and are frequently associated with gypsum. On a broad scale, they are always lens-shaped, though they vary greatly in extent and thickness.
The necessary conditions for the formation of extensive salt beds include arid climate and bodies of water which are essentially enclosed—either as lakes, as lagoons, or as arms of the sea with restricted outlets,—where evaporation exceeds the contributions of fresh water from rivers, and where circulation from the sea is insufficient to dilute the water and keep it at the same composition as the sea water. Under such conditions the dissolved salts in the enclosed body become concentrated, and precipitation may occur. A change of conditions so that mud or sand is washed in or so that calcareous materials are deposited, followed by a recurrence of salt-precipitation, results in the interstratification of salt beds with shales, sandstones, and limestones.
For the formation of very thick beds of salt, and especially of thick beds of fairly pure composition, however, this simple explanation of conditions is insufficient. The deposits of Michigan and New York occur in beds as much as 21 feet in thickness, with a considerable number of separate beds in a section a few hundred feet thick. Beneath the potash salt deposits of Stassfurt, beds of common salt 300 to 500 feet in thickness are found, and beds even thicker are known in other localities. When we come to investigate the volume of salts deposited from a given volume of sea water, we find it to be so small that for the formation of 500 feet of salt over a given area, an equivalent area of water 25,000 feet deep would be required. It has therefore been one of the puzzling problems of geology to determine the exact physical conditions under which deposition of these beds took place.
One of the most prominent theories, the "bar" theory, suggests that deposition may have taken place in a bay separated from the sea by a bar. Sea water is supposed to have been able to flow in over the bar or through a narrow channel, so that evaporation in the bay was about balanced by inflow of sea water. Thus the salts of a very large quantity of sea water may have accumulated in a small bay. As the process went on, the salts would become progressively more concentrated, and would be precipitated in great thickness. A final complete separation of the basin from the sea, for instance by the relative elevation of the land, might result in complete desiccation, and deposition of potassium-magnesium salts such as those found at Stassfurt (p. 113).
Another suggestion to explain the thickness of some salt beds is that the salts in a very large basin of water may, as the water evaporated and the basin shrank, have been deposited in great thickness in a few small depressions of the basin.
Other writers believe that certain thick salt deposits were formed in desert basins (with no necessary connection with the sea), through the extensive leaching of small quantities of salt from previous sediments, and its transportation by water to desert lakes, where it was precipitated as the lakes evaporated. Over a long period of time large amounts of salt could accumulate in the lakes, and thick deposits could result. Such hypotheses also explain those cases where common salt beds are unaccompanied by gypsum, since land streams can easily be conceived to have been carrying sodium chloride without appreciable calcium sulphate; in ocean waters, on the other hand, so far as known both calcium sulphate and sodium chloride are always present, and gypsum would be expected to accompany the common salt.
A partial explanation of some great thicknesses found in salt beds is that these beds, especially when soaked with water, are highly plastic and incompetent under pressure. In the deformation of the enclosing rocks, the salt beds will flow somewhat like viscous liquids, and will become thinned on the limbs of the folds and correspondingly thickened on the crests and troughs.
The salt deposits of the Gulf Coast of Texas and Louisiana should be referred to because of their exceptional features. They occur in low domes in Tertiary and more recent sands, limestones, and clays. Vertical thicknesses of a few thousand feet of salt have been found, but the structure is known only from drilling. In some of these domes are also found petroleum, gypsum, and sulphur (p. 110). No igneous rocks are known in the vicinity. It has been thought by some that the deposits were formed by hot waters ascending along fissures from underlying igneous rocks, and the upbowing of the rocks has been variously explained as due to the expanding force of growing crystals, to hydrostatic pressure of the solutions, and to laccolithic intrusions. On the other hand, the uniform association of other salt and gypsum deposits with sedimentary rocks, and the absence of igneous rocks, suggest that these deposits may have had essentially a sedimentary origin, and that they have been modified by subsequent deformation and alteration. The origin is still uncertain.
Other mineral deposits formed under much the same conditions as salt are gypsum, potash, borax, nitrates, and minerals of bromine; and in a study of the origin of salt deposits these minerals should also be considered.
TALC AND SOAPSTONE
Economic Features
Soapstone is a rock composed mainly of the mineral talc. Popularly the terms talc and soapstone are often used synonymously. The softness, greasy feel, ease of shaping, and resistance to heat and acids of this material make it useful for many purposes. Soapstone is cut into slabs for laundry tubs, laboratory table tops, and other structural purposes. Finer grades are cut into slate pencils and acetylene burners. Ground talc or soapstone is used as a filler for paper, paint, and rubber goods, and in electrical insulation. Fine grades are used for toilet powder.
Pyrophyllite (hydrated aluminum silicate) resembles talc in some of its properties and is used in much the same way. Fine English clays (p. 85) are sometimes used interchangeably with talc as paper filler.
The United States produces nearly two-thirds of the world's talc. The other large producers are France, Italy, Austria, and Canada (Ontario).
The United States is independent of foreign markets for the bulk of its talc consumption, but some carefully prepared talc of high quality is imported from Canada, Italy, and France. Italy is our chief source of talc for pharmaceutical purposes, though recently these needs have been largely supplied by high-grade talc from California. In the United States, Vermont and New York are the leading producers of talc and Virginia of soapstone slabs. Reserves are large.
Geologic Features
Talc is hydrated magnesium silicate, as is also serpentine, a mineral with which talc is closely associated. Both are common alteration products of magnesian silicate minerals such as olivine, pyroxene, and amphibole. Talc is also derived from the recrystallization of magnesian carbonates.
Talc deposits consist of lenses and bands in metamorphic limestones, schists, and gneisses of ancient age. The talc itself is usually schistose like the wall rocks, and is largely a product of mechanical mashing. In some cases, also, talc results from the alteration of igneous rocks without mashing—as in the case of the large talc and soapstone deposits of Virginia, which are the result of rather complete alteration of basic igneous rocks such as peridotites and pyroxenites.
Talc is known to result from the weathering of magnesian silicates under surface conditions, but the common occurrence of the principal deposits, in highly crystalline rocks which have undergone extensive deep-seated metamorphism, is an indication that processes other than weathering have been effective. It has been suggested that hot ascending solutions have been responsible for the work, but without much proof. A more plausible explanation for many deposits is that the talc results from the dynamic metamorphism or shearing of impure magnesian carbonates (as in highly magnesian limestones), the process resulting in elimination of the carbon dioxide and recrystallization of the residue. Certain talc deposits, such as those of Ontario, show clearly traces of the original bedding planes of limestone crossing the cleavage of the talc, and the rock bears all the evidence of having formed in the same manner as a common slate. Talc and slate are almost the only mineral products which owe their value principally to dynamic metamorphism.