CHAPTER XI GOLD, SILVER, AND PLATINUM MINERALS

Previous

GOLD ORES

Economic Features

The principal and most essential use of gold is as a standard of value and a medium of exchange. Gold has been prized since the earliest times because of its luster, color, malleability, and indestructibility, and has long been used as a trading medium. At present little of the metal is actually circulated from hand to hand. Stocks of gold, however, accumulated by governments and banking interests, form the essential foundation of paper currency and of the vast modern system of credit relations. In the settlement of international trade balances considerable quantities of gold frequently move from debtor to creditor nations. Although the amounts thus shipped are frequently great in value, they are very small in volume. It is interesting to note that the entire accumulated gold stocks of the world's governments—about nine billion dollars—cast in a solid block, with the horizontal dimensions of the Washington monument, would be only about 12 feet high.

Other uses of gold are in dentistry, and in the arts for jewelry, gilding, and other forms of ornamentation. Consumption for these purposes has been increasing of late years and now takes a third or more of the world's annual production. In the United States, before war-time restrictions were adopted, the consumption for jewelry and similar uses exceeded the consumption in coinage. Since the war it has exceeded the total domestic production of gold. An interesting problem for the future is how an adequate supply of gold is to be distributed between monetary uses and the arts. The curve of increase in the requirements of the arts indicates that, unless there is greatly increased production, all the world's gold will be necessary for the arts in a comparatively few years. To retain it for monetary purposes would require government restrictions.Of all the mineral commodities, gold has played perhaps the most important and certainly the most romantic part in the world's history. The "lure of gold" has taken men to the remotest corners of the globe. It has been the moving force in the settlement and colonization of new countries, in numerous wars, and in many other strenuous activities of the human race.

About two-thirds of the annual gold production of the world comes from the British Empire—from South and West Africa, Australasia, Canada, and India. A single colony, the Transvaal, produces about 40 per cent of the world's total. British capital, which seems to have a particular affinity for investments in gold mines, controls not only the larger part of the output from the colonies, but also important mines in Siberia, Mexico, South America, and the United States.

Russia, Mexico, and Japan have small gold production. The chief deposits of Russia are those of Siberia, which have had an important output and have apparent great possibilities of increase. Other foreign districts are numerous and widely scattered, but, with the exception of Colombia and Korea, no one of them yields 1 per cent of the world's gold.

French interests control about a tenth of the production of the Transvaal, and minor supplies in Mexico and South America—in all about 6 per cent of the world's production. Germany and Austria control less than 1 per cent of the total gold production. German interests formerly had extensive holdings in South Africa and Australia, but during the war this control was eliminated.

The United States, the second largest gold-producing country, supplies about 20 per cent of the world's total. Commercially it controls production of another 5 per cent in foreign countries, chiefly in Canada, Mexico, South America, and Korea. About one-fourth of the United States production comes from California. Other producing states in order of importance are Colorado, Alaska, South Dakota, Nevada, Arizona, Montana, and Utah. These eight states supply 95 per cent of the country's output, and most of the remainder is obtained from other western states.

International movements of gold depend chiefly upon its use in the settlement of trade balances, and are not governed by the considerations which control ordinary mineral commodities. Imports and exports vary with changing foreign trade balances. Large amounts of gold normally go to London, because Great Britain requires all gold produced in the colonies to be sent to England; but since England ordinarily has an unfavorable balance of trade, much of this gold is reËxported. The United States up to a few years ago was also a debtor nation, and more gold was exported than was imported. During the war, however, this country became the greatest of the creditor nations and imports of gold, chiefly from Europe, were several times the exports.

The total world's gold production up to 1920 has been upwards of 19 billions of dollars, of which about 10 billions have gone into the arts or been hidden and lost, leaving 9 billions in monetary reserve.

At the present writing the United States government holds an unusually large fraction of the world's gold reserve, about 28 per cent or 2 billion dollars,—an amount equal to two-thirds of the aggregate production of the United States to date. Other large stocks of gold are held, in order, by Great Britain, France, and Russia, these three with the United States holding over a half of the world's total gold reserve. Germany has about 1-½ per cent of the total reserve, and, with its tremendous debt and no sources of new production, is of course in a particularly unfavorable position.

The total amount of gold now (1920) accounted for by governments as money is not more than 10 per cent of the value of the notes and currency issued against this gold. Before the war it was 60 per cent. In the United States the pre-war percentage was 99-½ per cent. Since the war it has been 45 per cent. The ratio of gold to currency is now so small that the gold standard is hardly a physical fact, but is to be regarded rather more as a profession of faith. Notwithstanding the recent falling off in gold production, an increment of approximately 350 million dollars is potentially available each year to be added to the gold reserves. Whether this increment, or a larger increment which may come from new discoveries, is sufficient to maintain a reasonable proportion between gold stocks and the necessary normal increase in paper currency, has been, and doubtless will continue to be, a subject of vigorous discussion and speculation.

During and immediately following the war, the gold production of the world showed rather an alarming progressive decrease. About 1915 the group of three greatest producers—South Africa, United States, and Australia,—reached the acme of its production, and output then fell off. Simultaneously there was a marked decrease of production in many of the less important districts. This general decline was due in considerable part to the fact that during the war the price of gold was fixed and its use restricted to monetary purposes. The price of gold, which is itself the standard of value, could not rise to offset growing mining costs and to maintain profits, as was the case with iron, copper, and the other metals,—with the result that the margin of profit in gold mining became so small as materially to affect exploration and production. Another important cause of decreased production was the actual exhaustion of certain mines, and the lowering of the grades of ore available in many others. New discoveries did not supply these deficiencies. In the United States, for instance, physical conditions of one kind or another were responsible for lessening of production from Alaska, Cripple Creek, and California. Minor causes included conflicts in California between agricultural and mining interests over water rights, and a succession of dry seasons which did not afford enough water for the working of placers; and in Alaska difficulties due to litigation over the oil-flotation process of recovering gold from its ores. As a result of all these conditions, many of the smaller mines were closed down, others continued operations only by curtailing exploration and by mining solely the richest and most accessible ore bodies, and there was a general discouragement and lack of inducement to engage in gold mining.

The gold situation has become a matter of great concern to the various governments, since national financial stability and the confidence of the public in the national credit are based largely upon the acquirement of an adequate gold reserve. Both in England and in the United States, committees of experts have been appointed to make exhaustive investigations and present recommendations for measures to stimulate production. The report of the joint committee from the United States Bureau of Mines and Geological Survey gives a comprehensive review of the conditions in the gold-mining industry.[34]During the war there was vigorous demand by gold miners both in the United States and South Africa for a bonus on gold. These demands received serious consideration on the part of the governments, but were denied on the general ground of the doubtful adequacy of such a measure to meet the situation, and the danger of upsetting the gold standard of value. In the United States, for instance, a bonus of $10 per ounce was asked for. It did not appear likely that this could increase the annual production from the United States by more than 10 per cent, in face of the physical conditions being met in gold mining. The bonus would have had to be paid on all the gold mined, which would make the increment of production very expensive; to secure an added production of ten million dollars would have cost in the neighborhood of forty millions. Ten millions is only one-third of 1 per cent of the gold reserve already held by this country, and it would obviously have taken a long time for this small increase in annual production to make itself felt in the size of the gold reserves.

Since the war gold has gone to a considerable premium in England, due to the action of the British government in establishing a "free" market,—that is, abandoning the restriction that gold marketed in London should be offered to the government or the Bank of England at the fixed statutory price for monetary purposes. With the pound sterling at a considerable discount outside of England, other countries could afford to bid, in terms of British currency, far above the British mint price. The result is that the South African miner of gold receives a premium due to depreciation of sterling exchange, while the American miner still receives the regular mint price. The agitation for a bonus therefore continues in the United States. However, with the removal of war-time restrictions gold has been allowed to go to the arts, the demand from which is already equal to one-third of the world's gold production, is rapidly increasing, and is temporarily acute due to the accumulation of requirements resulting from war restrictions. This situation has a general tendency to improve the position of the gold miner, though the outlook is still far from bright.

It is an interesting fact that India is absorbing a good half of the free gold. India, in regard to its demand for precious metals and stones, has been described as "an abyss from which there is no return." This is an important contributing cause of the shortage of gold in the rest of the world.

Looking forward to the future, it seems that increased exploration, which is resulting from the present premium on gold, is likely to bring in new reserves to increase production. Because of lack of important discoveries in recent years, there is pessimism in some quarters as to the possibilities of large increase of production; but, considering the history of gold discoveries, and the amount of ground still to be explored both areally and vertically, this pessimism does not seem to be wholly justified from the geologic standpoint. Curves representing the world's gold production in past years show periods of increasing annual production as new fields are discovered, followed by periods of decreasing production when no new ore bodies are coming in to replace dwindling reserves. It is entirely possible that in recent years the gold-mining industry has been merely in one of these temporary stagnant periods. There are many regions, both in the vicinity of worked-out lodes and in unsettled and poorly explored countries, where gold may still be discovered; there may be far greater resources of this metal still covered up than all those which man has thus far uncovered. A single new deposit or district may make a great difference in the world's production, as suggested by the experience of the past. Regions which are especially attractive for exploration and the discovery of new deposits are in Siberia and South America, which in the opinion of many engineers may eventually rival South Africa. Mexico, with the establishment of a stable government, should also have a greatly increased production.

Geologic Features

The principal gold mineral is native or metallic gold. This occurs in nature in small scales, crystals, and irregular masses, and also in microscopic particles mechanically mixed with pyrite and other sulphides. Chemically, gold is very inactive and combines with but few other elements. A small part of the world's supply is obtained from the gold-silver tellurides—calaverite, sylvanite, krennerite, and petzite.

Gold deposits are of two general classes—placers, and veins or lodes.Placers, which are in general the more easily discovered and more easily worked deposits, have in the past been the chief source of the world's gold supply. It is estimated that in the first twenty-seven years of the modern era of gold-mining, beginning with the discovery of gold in California in 1848, 87 per cent of the world's production was obtained from placers. At present the placers of recent geologic age supply a tenth to a fifth of the gold, and ancient or fossil placers in the Transvaal supply another two-fifths. In the United States about a fourth of the gold production comes from placers, mainly from California and Alaska.

Placers are detrital or fragmental sediments containing the ore in mechanical fragments, which are derived from the erosion and transportation of solid-rock veins or lodes, sometimes called the "mother lode." During the process of transportation and deposition there is more or less sorting, because of differing density of the mineral fragments, resulting in the segregation or concentration of the ore minerals in certain layers or channels. Gold, because of its weight, tends to work down toward bedrock, or into scoured or excavated portions of stream channels. In a few cases it is carried in some quantity to the sea and concentrated in beach sands. The processes are not unlike the mechanical concentration of ores by crushing and water sorting. Seldom, however, do the processes go far enough in nature to produce an ore which can be used directly without some further mechanical sorting. Ore minerals concentrated in placers are those which resist abrasion and chemical solution during the processes of weathering and transportation, and which have a density sufficiently high so that they are partially sorted out and concentrated from the accompanying quartz and other minerals. To warrant their recovery they must also be of such high intrinsic value that it pays to mine small quantities. The most important of such minerals are gold, tin, platinum, and the precious stones. Iron, copper, lead, and zinc minerals are often somewhat concentrated as placers, but their intrinsic value is not high enough to warrant the attempt to recover them in the large amounts necessary to make them commercially available.

Placers are forming now and have formed at all stages of the earth's history. Early placers may be reworked and further concentrated by renewal of the proper erosional and transportational conditions. Old placers may be buried beneath younger rocks, cemented, and more or less recrystallized. "Fossil" placers of this kind are best represented by deposits in the Black Hills of South Dakota and probably by the South African gold deposits.

In the Witwatersrand deposits of South Africa, the gold is concentrated in the lower parts of large conglomerate and quartz sand layers of great areal extent. Pebbles of the conglomerate are mainly quartz and quartzite. The gold, in particles hardly visible to the eye, is in a sandy matrix and is associated with chloritoid, sericite, calcite, graphite, and other minerals. The origin of the gold deposits of this district is not entirely agreed on, but the evidence seems on the whole to favor their placer origin. Some investigators of these ores believe them to have been introduced into the conglomerate and sand by later solutions, possibly by hot solutions related to certain diabase intrusions that cut the beds.

In the vein or lode or hard-rock deposits, the gold is mainly metallic gold, and to a minor extent is in the form of gold tellurides. It is usually closely associated with iron pyrite in a matrix or gangue of quartz. Seldom is a gold deposit free from important values in other minerals. About 84 per cent of the gold mined in vein or lode deposits of the United States is associated with silver minerals, the combined value averaging about $6 per ton; about 13 per cent comes from copper ores which have an average yield of gold and silver of 50c. per ton; and 3 per cent comes from zinc and lead ores, with an average gold and silver yield ranging from $1 to $6 per ton. The geologic occurrence of gold in the copper, lead, and zinc ores has already been referred to in the discussions of these ores.

Reference will be made here only to the vein deposits in which gold, with silver, constitutes the principal values. Because of their common gangue of quartz these are often called "dry" or "siliceous" ores. Their principal occurrence is in distinct fissure veins in igneous rocks, with more or less replacement of the wall rock. The igneous rocks are commonly acid intrusives of a granite or porphyry type, less commonly intrusives of gabbro and diabase and surface lavas of rhyolite and basalt. In a few cases the ores are contact-metamorphic deposits of the type described under copper ores. In still rarer cases they are in pegmatites. Gold is commonly associated with minerals and wall-rock alterations indicating deposition by hot solutions, which are inferred to have come from the igneous rocks.

Because of the resistant nature both of ore minerals and gangue, weathering and secondary concentration have had little effect in enriching gold deposits. So far as there has been any noticeable effect on the gold content of the ores, it has been due to the leaching out of other constituents, principally pyrite and other sulphides, leaving the gold present in slightly larger proportions. Locally there is evidence of solution of gold in weathered zones and its deposition in the sulphide zones below. Solution is believed to be accomplished by chloride solutions, and is favored by the presence of manganese which delays precipitation. The precipitating agent below may be ferrous sulphate, various sulphides, native metals, or organic matter.

Of the vein or lode gold ores in the United States some of the most productive and best known have the following geologic features:

The California gold belt extends north and south along the west slope of the Sierra Nevada Mountains. The ore is in a series of parallel and overlapping veins striking with the trend of the range, associated with granodiorite intrusives in schist and slate. There is no pronounced secondary concentration. These deposits are the source of most of the great placer deposits of California, hence the name "Mother Lode" applied to a part of them. The principal ore deposits are somewhat removed from the main mass of intrusive which forms the crest of the Sierra Nevada range, and are more closely related to the smaller similar intrusive masses farther down the slope. The gangue is mainly quartz.

At Juneau, Alaska, great dikes of albite-diorite intrude greenstones and schists, and low-grade gold ores occur in shattered portions of the diorite. These ores were mined on a great scale at the Treadwell Mine.

Another famous low-grade deposit is the Homestake Mine in the Black Hills of South Dakota, where pre-Cambrian slates and schists of sedimentary origin are impregnated with gold, associated with quartz, dolomite, calcite, pyrite, and other minerals. The origin is supposed to have some connection with intrusives into the schists; but the relations of the ores to intrusives, both in age and in place, present many puzzling questions which make conclusion as to origin very difficult.In the Cripple Creek district of Colorado, a volcanic neck two or three miles in diameter breaks through pre-Cambrian granites, gneisses, and schists. The volcanic rocks consist mainly of tuffs and breccias cut by basic dikes. The ore bodies are in fissures and sheeted zones, principally in the granitic rocks, but associated with these dikes. The ore is mainly gold telluride, in a gangue of quartz together with pyrite and a variety of minerals characteristic of hot-water solutions. Also the wall rocks have the characteristic hot-water alterations. There is slight enrichment near the surface.

At Goldfield, Nevada, native gold is found in surface igneous flows of a dacite type, which have undergone extensive hydrothermal alterations characterized by the development of alunite (a potassium-aluminum sulphate), quartz, and pyrite. The ore fills fissures to some extent, but is mainly a replacement of the wall rock. Association with typical hot-water minerals and hydrothermal alterations of the wall rock are again believed to indicate the origin of the ores through ascending hot solutions from a deep source.

One of the interesting features of this occurrence is the abundance of alunite. Sulphate minerals are commonly formed by oxidizing solutions. The abundant presence, therefore, of a sulphate mineral with minerals of a primary deep-seated source has led to much discussion of origin. The hypothesis was developed that these minerals result from the interaction of deep-seated sulphide-bearing solutions with surface oxidizing solutions.[35] It may be noted that in recent years other sulphate minerals have been occasionally regarded as primary, including gypsum, anhydrite, barite, and others. It has been suggested that if igneous emanations contain free oxygen and sulphur, or sulphur dioxide, it would be expected that as they become cool sulphur trioxide would be formed which would result in the sulphate at suitable temperature.[36]

Other deposits containing gold are discussed in connection with silver on following pages.

SILVER ORES

Economic Features

Silver has two important uses—in money and in the arts. As money, it is used in the United States and Europe for subsidiary coinage,—silver coins normally circulating at more than their intrinsic value,—but its greatest monetary use is in India and China, where it has been the basis for the settlement of foreign exchange balances. In China also it is the money standard of the country. In the arts, silver is employed chiefly in the making of articles of luxury, such as jewelry and tableware. In the Orient this use is closely related to its use as money, since the natives invest their savings both in silver jewelry and silver coins. There is some consumption of silver by certain chemical industries, and quantities of increasing importance are used in the form of silver salts by the photographic and moving picture industries. It has been estimated that before 1914 about two-thirds of the new silver produced went into the arts and one-third into money. During the war, however, increasing amounts were used in coinage, and less than one-fifth of the output was used in the arts. Demands for silver for monetary purposes will probably continue to take the larger part of the world's production for some time. In this connection it may be noted that India has adopted a gold standard, but that the conservative habits of the population will doubtless continue to call for large amounts of silver.

About half of the silver production of the world comes from the dry or siliceous silver ores, which are mined solely for that metal and the associated gold; and about half of the production is obtained as a by-product in the mining of other metals, principally copper and lead. The average grades of these ores, in combined values of gold and silver, were referred to on p. 228. While the aggregate amount of silver obtained as a by-product of other ores is large, the percentage of silver in the copper or lead in any mine is ordinarily very small. Consequently the world output of silver depends to a considerable extent upon conditions in the copper- and lead-mining industries.

Of the total world output of silver, normally about 75 per cent comes from North America. Of this the United States and Mexico each produce about two-fifths and Canada one-fifth, and minor amounts are produced in Central America. In late years, political disturbances in Mexico reduced that country's production to less than half the normal figure, and the United States took the place which Mexico had held for many years as the leading silver producer. The United States and Mexican supply is obtained from the Rocky Mountain belt, and the Canadian production comes chiefly from the Cobalt, Ontario, district. Outside of North America the principal producing areas are Australia, South America (Peru and to a less extent Bolivia and Chile), Europe (chiefly from Spain, Germany, and Austria-Hungary, but with smaller amounts from all the other countries), and Japan. Thus, while there are sources of silver in many places, the great bulk of the world's output comes from North America. In the financial ownership of mines, including ownership in other countries, the United States controls over half the world's silver, Great Britain about a third, and Germany about a tenth (principally in Mexico).

All the silver mined in the United States is smelted and refined by domestic plants; and in addition much of the Canadian, Mexican, and South and Central American silver is exported to the United States as ore and base bullion, to be treated in this country. The United States is therefore the great silver-selling country of the world.

The great silver-consuming countries are India and China, and normally about a half of the world's output goes to these two countries. This major movement of silver, from America to the Far East, takes place through the London market, since England has been the chief nation trading in the Orient. The balance of the world's silver consumption is widely distributed among the countries of Europe and South America and the United States (which consumes about one-tenth of the total). For the European trade most of the silver also goes through London, which is the great clearing-house and the market where prices are fixed.

In the later years of the war and immediately after, the demands for silver were probably twice the world's output. The resulting rise in price was unprecedented. Silver actually became worth more as bullion than as currency, and in Europe much trouble was experienced because of its withdrawal from currency to be melted up. This condition was later followed by an equally striking drop in price as supply caught up with demand.

In the United States, as in many other countries, it was desired during the war to accumulate large stocks of gold as a basis of credit for the flotation of government loans, and the export of gold was prohibited. Consequently in the settlement of foreign trade balances, particularly with the nations of the Orient, very large amounts of silver bullion had to be used. Current production proved inadequate, and it was necessary to utilize the stocks of silver dollars in the United States Treasury. To this end the Pittman Silver Act, passed in April, 1918, authorized the melting down and conversion into bullion of 350,000,000 dollars out of the Treasury stock, and the retirement of a corresponding number of silver certificates and the issue of Federal Reserve bank notes. In this manner old stocks of silver, Manila dollars, etc., were called into service—though the stage was not reached, as it was in Germany, where it became necessary to melt down silver plate and ornaments. The silver used for exchange and export was to be replaced by the purchase of bullion from American producers at $1 per ounce, and its coining into new dollars. A minimum price of $1 per ounce was thus established for silver bullion.

The immediate result was to increase the price of silver at the mine; but with the continued rise in demands for silver, the price in the open market went far above this figure, the maximum being reached in 1920 when the price of silver went to $1.39 per ounce. Naturally, but little silver was then offered to the government at the fixed price of $1 under the Pittman Act. With the more recent slump in the general market for silver to a price below $1, offers to the government under the Pittman Act have been renewed.

That part of the silver production which is a by-product of copper production has been low since the war, because of the stagnation in the copper industry. The production from lead ores, on the other hand, was not handicapped by lack of demand for lead. With the restoration of order in Mexico, a presumption of large silver production in that country may be expected. Increases may probably be expected also from new mines in Burma and from Bolivia. On the whole, no large increase in world production can be assumed from present known resources. New discoveries will be necessary to make any considerable change.Of the mine production of silver in the United States, about two-thirds of the total comes from the states of Montana, Utah, Idaho, and Nevada. Other considerable producers are Colorado, Arizona, California, Alaska, and New Mexico. All the other states together produce less than 5 per cent of the total. The most important single districts are the Butte district of Montana, the Coeur d'Alene district of Idaho, and the Tonopah district of Nevada, supplying respectively about one-fifth, one-eighth, and one-tenth of the country's total silver output.

Geologic Features

The most important mineral of silver is the sulphide, argentite or "silver glance." Other minerals which yield a minor percentage of the total silver produced are the silver-antimony sulphides, pyrargyrite or "ruby silver," stephanite or "black silver," and polybasite; the silver-arsenic sulphides, proustite or "light ruby silver" and pearcite; and the silver antimonide, dyscrasite. In the oxide zone the most abundant minerals are cerargyrite (silver chloride) and native or "horn" silver. In addition to these definite mineral forms, silver is present in many ores in an undetermined form in other sulphides, notably in galena, sphalerite, and pyrite. Silver differs from gold in that it is chemically active and forms many stable compounds, of which only the more important have been mentioned.

The fact that half the world's silver is obtained as a by-product in the mining of other metals has been referred to. In the United States about a third of the production comes from dry or siliceous ores, over a third from lead and zinc ores, and a fourth to a third from copper ores. A fraction of 1 per cent of the total is obtained as a by-product of gold placers, and all the remainder is won from lode or hard-rock deposits.

The general geologic features of the silver-bearing copper and lead ores, and of the dry or siliceous gold and silver ores, have been described on previous pages. The Philipsburg district has been referred to in connection with manganese ores, and the Bolivian tin-silver ores will be described in connection with tin. We shall consider here only a few of the more prominent districts which have been primarily silver producers.

The Cobalt district of northern Ontario is the most productive silver district in North America. The ores are found in numerous short, narrow veins, principally in pre-Cambrian sediments near a thick quartz-diabase sill. Locally they penetrate the sill. Native silver and various silver sulphides, arsenides, and antimonides are associated with minerals of cobalt, nickel, bismuth, lead, and zinc, in a gangue of calcite and some quartz. The ore is of very high grade. The ore minerals are believed to have been deposited by hot solutions emanating from deep magmatic sources after the intrusion of the diabase. The present oxidized zone is very shallow, but may have been deeper before being stripped off by glaciation; it is characterized by native silver and arsenates of nickel and cobalt in the form of the green "nickel bloom" and the pink "cobalt bloom." The silver minerals are distinctly later in origin than the cobalt and nickel in the unoxidized zone, as evidenced by the relations of the mineral individuals when seen under the microscope. This fact, together with the abundance of native silver in the oxide zone, has suggested downward concentration of the silver by surface waters; but recent studies have indicated the probability that some of the silver at least was deposited by the later ascending solutions of magmatic origin.

In the Tintic district of central Utah, Paleozoic limestones have been intruded by monzonite (an acid granitic or porphyritic igneous rock), and covered by surface flows, the flows for the most part having been removed by subsequent erosion. The sediments have been much folded and faulted, and the ore bodies occur as fissure veins which locally widen into chimneys or pipes in fracture zones, accompanied by much replacement of limestone. There is a rough zonal arrangement of the ore minerals around the intrusive, gold and copper minerals (chiefly enargite and chalcopyrite) being more prominent near the intrusive, and argentiferous galena and zinc blende richer at greater distances. Silver constitutes the principal value. The gangue is mainly fine-grained quartz or jasperoid, and barite. The water table is at unusually great depths (2,400 feet) and there is a correspondingly deep oxidized zone, which is characterized by lead and zinc oxide minerals much as at Leadville (p. 219).

The Comstock Lode at Virginia City, Nevada, on the east slope of the Sierra Nevadas, was one of the most famous bonanza deposits of gold and silver in the world. While the richer ore has all been extracted, lower-grade material is still being mined and the fissure is still being followed, in the hope of some day striking another fabulously rich ore body. The lode occupies a fault fissure parallel to the trend of the range and dipping about 40 degrees to the east, which can be traced about two and a half miles along the strike, with igneous rocks forming both hanging and foot walls. There are no sedimentary rocks in the district. The high-grade part of the vein is several hundred feet in thickness, with many irregular branches; the great thickness has been thought to be at least in part due to the tremendous pressure exerted by growing quartz crystals. The wall rocks have undergone a "propylitic" alteration, with development of chlorite, epidote, and probably sericite, much as at Butte. The ore contains rich silver sulphide minerals and native gold, in a gangue composed almost entirely of quartz. The ore was doubtless formed by hot solutions, but the exact nature of these solutions, whether magmatic or meteoric, has not been proven. The hypothesis was early developed that the ores were deposited by surface waters,—which are supposed to have fallen on the summits of the Sierra Nevadas, to have sunk to great depths where they were heated, enabling them to pick up metallic constituents from the diabase forming one wall of the ore body, and to have risen under artesian pressure along the fault plane, where loss of heat and pressure resulted in deposition. Later studies have emphasized the similarity of the ore-depositing conditions with those in other districts where the ores are believed to have come directly from magmatic sources, and this origin is now generally favored for the Comstock Lode. However, the earlier theory has not been disproved.

The Tonopah, Nevada, district is very similar to the Goldfield district (p. 230). Silver and gold are found in veins and replacements in a series of Tertiary volcanic flows and tuffs, all of which have been complexly faulted. Silver is the dominant constituent of value. The formation of fissures and faults accompanying and caused by the intrusion and cooling of lavas was first clearly shown in this district. Evidences of origin through the work of hot solutions, probably magmatic, are the close association of the ores in place and in time with the igneous rocks—ore deposition in most of the flows having taken place before the next overlying flows were put down,—the presence of fluorine, the nature of the wall-rock alterations, the fact that both hot and cold springs are found close together underground (indicating unusual sources for the hot springs), the contrast in composition between the ores and the country rock, and the general relation of these ores to a large number of similar occurrences in Tertiary lavas in the same general area.

Under weathering conditions, the silver sulphide minerals in general are oxidized to form native silver and cerargyrite, which are relatively insoluble and remain for the most part in the oxide zone. Silver is less soluble than copper and zinc, but more soluble than gold; and to some extent it is removed in solution, particularly where the oxidation of pyrite forms ferric sulphate. Farther down it may be reprecipitated as native silver, argentite, and the sulpho-salts, by organic matter or by various sulphides. The secondarily enriched ores are in a few districts, as at Philipsburg, Montana, the most valuable portions of the deposits. In other cases, sulphide enrichment does not appear to have contributed greatly to the values. The zones of oxide ores, secondary sulphide ores, and primary or protores are in most silver deposits much less regular and much less definitely marked than in the case of copper ores.

PLATINUM ORES

Economic Features

The principal uses of platinum are: as a catalytic agent in the contact process for the manufacture of sulphuric acid, and in the making of nitric acid from ammonia; for chemical laboratory utensils that must be resistant to heat and acids; for electrical contacts for certain telephone, telegraph, and electrical control instruments, and for internal combustion engines; in dental work; and for jewelry. In normal times before the war, it is estimated that in the United States the jewelry and dental industries used 75 per cent of the platinum metals consumed, the electrical industry 20 per cent, and the chemical industry 5 per cent. During the war, with the extraordinary expansion of sulphuric and nitric acid plants, these proportions were reversed and the chemical and electrical industries consumed about two-thirds of the platinum. Substitutes have been developed, particularly for the electrical uses, and the demand from this quarter may be expected to decrease.

About 90 per cent of the world's crude platinum produced annually comes from the Ural Mountains in Russia. The deposits next in importance are those of Colombia. Small amounts are produced in New South Wales, Tasmania, New Zealand, Borneo, British Columbia, United States, India, and Spain; and as a by-product in the electrolytic refining of the Sudbury, Canada, nickel ores. The extension of this method of refining to all of the Sudbury ores would create an important supply of platinum. The Colombian output has been increasing rapidly since 1911. Meanwhile the Russian production has declined; and from the best information available, it is not likely that Russia will be able to maintain production for many more years. Estimates of the life of the Russian fields are from 12 to 20 years at the pre-war rate of production.

The platinum situation is commercially controlled by buying and mine-operating agencies,—the French having, before the war, practically dominated the Russian industry, while American interests controlled in Colombia. The situation is further influenced by four large refineries, in England, Germany, United States, and France.

Before the war the United States produced less than 1 per cent of the new platinum it consumed annually. Production comes principally from California, with smaller amounts from Oregon, Alaska, and Nevada. The many efforts which have been made to develop an adequate domestic supply of this metal do not indicate that the United States can ever hope to become independent of foreign sources for its future supplies of platinum.

There is little reason to doubt that the Colombia field, commercially dominated by the United States, holds great promise for the future. The output has come largely from native hand labor, and with the installation of dredges can probably be greatly increased.

During the war, the need for platinum for war manufactures was so urgent and the production so reduced, that restrictions against its use in jewelry were put into force in all the allied countries. The United States government secured quantities of platinum which would have been sufficient for several years' use if war had continued. With the cessation of hostilities restrictions on the use of platinum were removed, and the accumulated metal was released by the government from time to time in small quantities; but the demands for platinum in the arts were so great that prices for a time tended to even higher levels than during the war. More recently supply is again approaching demand.

Geologic Features

Platinum, like gold, occurs chiefly as the native metal. This is usually found alloyed with iron and with other metals of the platinum group, especially iridium, rhodium, and palladium. Most of the platinum as used in jewelry and for electrical purposes contains iridium, which serves to harden it. Paladium-gold alloys are a substitute for platinum, chiefly in dental uses.

The original home of platinum is in basic igneous rocks, such as peridotites, pyroxenites, and dunites, where it has been found in small, scattered crystals intergrown with olivine, pyroxene, and chromite. Platinum is very dense and highly resistant to oxidation and solution. In the breaking up and washing away of the rocks, therefore, it is concentrated in small grains and scales in stream and beach placers. Of the world production of platinum over 99 per cent has been derived from placers.

The Ural Mountain deposits of Russia are gold- and platinum-bearing placers, in streams which drain areas of dunite rock containing minute quantities of native platinum. The deposits of Colombia and Australasia are placers of a similar character. In the United States small quantities of platinum are recovered from the gold-bearing gravels of California and Oregon, where the streams have come from areas of serpentine and peridotite.

A platinum arsenide, called sperrylite, is sometimes found associated with sulphide minerals in basic igneous rocks. At Sudbury, Ontario, this mineral, together with palladium arsenide, is found in the nickel ores, especially in the weathered zone where it is concentrated by removal of more soluble materials. It has also been found in the copper mines of Rambler, Wyoming. In the Yellow Pine district of southern Nevada, metallic gold-platinum-palladium ore shoots are found in association with copper and lead ores, in a fine-grained quartz mass which replaces beds of limestone near a granitic dike. No basic intrusives are known in the district. The deposit is unusual in that it has a comparatively high content of platinum (nearly an ounce to the ton), and is probably genetically related to acid intrusives. From all these deposits, only small quantities of platinum are mined.

FOOTNOTES:

[34] Report of a joint committee appointed from the Bureau of Mines and the United States Geological Survey by the Secretary of the Interior to study the gold situation: Bull. 144, U. S. Bureau of Mines, 1919. See also Report of Special Gold Committee to Secretary of the Treasury, February 11, 1919.

[35] Ransome, F. L., The geology and ore deposits of Goldfield, Nevada: Prof. Paper 66, U.S. Geol. Survey, 1909, p. 193.

[36] Butler, B. S., Loughlin, G. F., Heikes, V. C., and others, The ore deposits of Utah: Prof. Paper 111, U.S. Geol. Survey, 1920, p. 195.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page