CHAPTER V

Previous

BLUE WATER

MOST people know and admire the splendid expanse of blue colour offered by the clear sea water on many parts of our coasts, and by that of lakes at home and abroad. I find that there is still a sort of a fixed determination not to believe that this colour is due (as it is) to the actual blue colour of pure water. Pure, transparent water is blue. Those who think they know better will point to a glass of pure water, hold it up to the light, and affirm that it is colourless. But this apparent colourlessness is due to the small breadth of water in the glass through which the light passes. It is definitely ascertained that if water as pure and as free from either dissolved or suspended matter as it is possible to make it (by distillation and the use of vessels not acted upon by water) be made to fill an opaque tube 15 ft. long, closed at each end by a transparent plate, and then a beam of light be made to traverse the length of the tube, so that the eye receives the light after it has passed through this length of 15 ft. of water, the colour of the light is a strong blue. Water is blue in virtue of its own molecular character, just as sulphate of copper is. Liquid oxygen, prepared by the use of intense cold, is also transparent blue, and the peculiar condensed form of oxygen known as "ozone" is, when liquefied, of a darker or stronger blue than oxygen.

At one time (some thirty years ago) there was still some doubt as to whether water was self-coloured blue, or whether its blue colour was due to the action on light of excessively minute solid white particles of chalk suspended in the water. Such fine suspended particles in some cases act on the light which falls on to them so as to reflect the blue rays. This occurs in certain natural objects which have a blue colour. But these can be distinguished from transparent self-coloured blue substances by the fact that whilst the light reflected from their surface is blue, the light which is made to traverse them (when they are held up to the light so that they come between one's eye and the sun's rays) is brown. This is the case with very hot smoke, and can be well seen when a cigar is smoked in the sunlight. The smoke which comes off from the lighted end of the cigar is very hot, and its particles are more minute than those of cooler smoke. The hot smoke shows a bright blue colour when the sunlight falls on it and is reflected, but when you look through the smoke-cloud at a surface reflecting the sunlight, the cloud has a reddish-brown tint. As the smoke cools its particles adhere to one another and form larger particles, and the light reflected from the cloud is no longer blue but grey, and even white. Thus the smoke which the smoker keeps for half a minute in his mouth is cooled and condensed, and reflects white light—is, in fact, a white cloud—when he puffs it out, and contrasts strongly with the blue cloud coming off from the burning tobacco at the lighted end of the cigar. The blue colour of the sky is held by many physicists (though other views have been of late advanced) to be due to the same action on the part of the very finest particles of watery vapour, which are diffused through vast regions of our atmosphere above the condensed white-looking clouds consisting of larger floating particles of water.

Vapours are given off by many liquids, and even by some solids, varying in their production according to the heat applied in different cases. They are gases, and quite transparent and invisible at the proper temperature, like the atmospheric air. Thus water is always giving off "water-vapour," which is quite invisible. When water is heated to the boiling point it is rapidly converted into transparent invisible vapour. Steam, as this vapour is called, is invisible, and we all habitually make a misleading use of the word "steam" when we apply it both to this and to the slightly cooled and condensed cloud which we can see issuing from the spout of a kettle or from a railway engine. It seems that the fault lies with the scientific writers, who have applied the word "steam" to the invisible water vapour or gas before it has condensed to form a cloud. The old English word "steam" certainly means a visible cloudy emanation, and not a transparent invisible gas. A cloud is not a vapour, but is produced by the coming together or condensation of the minute invisible particles of a vapour to form larger particles, which float and hang together, and reflect the light, and thus are visible.

By the examination of other vapours or gases than that which is gaseous water, namely, the vapours of bodies like chloroform and ether, it has been shown that "cloud" forms in a vapour not merely in consequence of the cooling of the vapour, but in consequence of the presence in the air (or in the tube in which the vapour is enclosed for observation) of very fine floating dust particles. They act as centres of attraction and condensation for the vapour particles. When there are no dust particles present clouds do not form readily in cooling vapours, or only at lower temperatures, and in larger mass. Tyndall made some beautiful experiments on this subject, obtaining clouds of great tenuity in vapours enclosed in tubes, which reflected the most vivid blue tints when illuminated by the electric arc-lamp. Later Aitken, of Edinburgh, showed that the "fog" which forms in smoke-ridden towns is due to the condensation of previously invisible watery vapour as "cloud" around the solid floating particles of carbon of the smoke. Aitken further used this property of solid floating particles, namely, that they cause the formation of fog and cloud in vapours—to test the question as to whether the excessively minute odoriferous particles which affect our noses as "smell" are distinct solid floating particles as often supposed, or are of the nature of gas and vapour. He admitted strong perfumes such as musk into tubes containing watery vapour, at such a temperature that the vapour was in a "critical" state—just ready to condense and precipitate as "cloud." If he had admitted fine solid particles such as a minute whiff of smoke, or some "dusty" air—the cloud would have formed. But the admission of the perfume had no such effect Therefore, he concluded that the odoriferous emanations used by him are not distinct particles like those of smoke or dust, but are gaseous.

The beautiful blue tint of the semi-transparent "white" of a boiled plover's egg is due to a fine-particled cloud dispersed in the clear albumen. London milk used to be "sky-blue" for a similar reason, before the recent legislation against the adulteration of food. The blue eyes of our fair-haired race and of young foxes are not due to any "pigment"—that is to say, a separable self-coloured substance—but to a fine cloud floating in a transparent medium which reflects blue rays of light as blue smoke does. The iris of the eye can and often does develop a pigment, but it is a brown one. When present in small quantity it produces a green-coloured iris, the pale yellow-brown being added to the blue cloud-caused colouring. When present in larger quantity the same pigment gives us brown and so-called "black" eyes. The blue colours in birds' feathers and insects' wings are produced without blue pigment by special effects of reflection, and where green is the colour it is often due to the addition of a small quantity of yellow pigment to what would otherwise look blue: though some caterpillars and grasshoppers have a real green pigment in their skin. Flowers, on the other hand, have true soluble blue "pigments," and green ones too, notably that called leaf-green or chlorophyll. The little green tree frog has no blue or green pigment in its skin; only a yellow pigment. Sometimes rare specimens are found in which the yellow pigment is absent altogether, and then the little frog is turquoise-blue in colour. But there is no blue pigment in the skin; only a finely-clouded translucent film overlying a dead-black deep layer of the skin, and the result is that the frog is of a wonderful pure blue. Sometimes the commoner large edible frog is found with a similar absence of yellow pigment (I found some in a garden near Geneva six years ago), and then all the parts of its skin which usually are green show as brilliant blue.

It is at first difficult to believe that such fine, smoothly-spread turquoise blue as that of the blue frog is due merely to a "reflection effect," and that there is no blue pigment present which would show as blue if light were transmitted through it, or could be separated and dissolved in some medium. Yet this is undoubtedly the case. The nearest experimental production of such a blue surface without blue pigment is obtained by first varnishing a black board, and when the varnish is nearly dry passing a sponge wetted with water over it. Some of the varnish is precipitated from its solution in the spirit (or it may be turpentine) as a fine cloud, and until the water has evaporated it looks like blue paint, as the poet Goethe found when cleaning a picture. It would be interesting to know more precisely the precautions to be taken in order to get the blue colour in this way in fullest degree.

It appears that when light is reflected from a cloud of fine colourless particles so as to give a predominant blue colour, the light so reflected is affected in that special way which physicists describe as being "polarized." It is possible by the use of certain apparatus (the polariscope) to distinguish polarized from non-polarized light, so that it should be possible to decide (or at any rate to gain evidence) whether blue water—a sheet of blue water—owes its colour to fine particles suspended in it or to the self-colour of the water. An admirable case for making this simple experiment is presented by the great tanks—some 20 ft. cube—which are used by the water companies which draw their water supply from the chalk, for the purpose of precipitating the dissolved chalk—"Clarking" the water, as it is called, after the inventor of the process—and so getting rid of its excessive "hardness." Such tanks are to be seen by the side of the railway near Caterham. The water in these tanks is of such a brilliant turquoise blue that many people suppose that copper has been added to the water to free it from microbes! Such, at any rate, was the conviction expressed by a friend in conversation with me only a few weeks ago. The water in these tanks, when seen from the railway, looks like a magnificent blue dye, and a very important point for those (not a few) who believe that the blue colour of seas and lakes is due to the reflection of the blue colour of the sky overhead is that the water in the tanks looks just as blue when the sky is overcast with cloud as when there is blue sky. The blue colour of water has, as a rule, nothing to do with the reflection of the sky, though it is the fact that a shallow film of water may at a certain angle reflect the sky to our eyes, just as a mirror may. The effect is quite unlike that due to light passing through deep water when reflected from below it. If we examine the tanks in question we find that they have been filled with water pumped from the chalk, and that then lime has been added to the water in order to combine with the carbonic acid dissolved in it and form chalk or carbonate of lime—which is insoluble in pure water and falls as an excessively fine white powder to the bottom of the tank. But the important fact is that water having carbonic acid dissolved in it can dissolve carbonate of lime or chalk to a certain amount: and this water pumped from the chalk, having carbonic acid naturally dissolved in it, has consequently also dissolved a quantity of chalk. It is this which gives the chalk-spring water the objectionable quality of "hardness." When lime is added to the chalk-spring water as pumped into the tanks, the carbonic acid in it is taken up by the lime, and the chalk previously dissolved by the carbonic-acid-holding water is, so to speak, "undissolved," and thrown down as a very fine white powder, together with the chalk newly formed by the union of the lime and the carbonic acid. These large tanks are used to allow the fine powder of chalk to settle down and leave the water clear. The brilliantly white chalk sediment accumulates not only on the floor of the tank, but on its sides. Any light which falls on the tank is refracted and reflected from side to floor and from floor to side, and eventually emerges from the tank, a great deal of it having traversed the 20 ft. breadth and depth many times. Most of its red, yellow, and green rays are quenched by the many feet of blue water through which it has passed, and it issues as predominantly blue. This is largely due to the fine reflecting surface furnished by the "white-washed" or chalk-coated floor and sides and the great purity of the white reflecting material—no yellow or brown matter being present to give a greenish tinge to the result I remember being taken to see "Clark's process" in use, and the splendid blue colour of the water in the "softening" tanks at Plumstead, when the process was first used by the North Kent Water Company, sixty-four years ago.

It is, I think, still a possible question as to whether the fine floating particles of precipitating chalk act in any way as a "cloud"—in short, as the blue clouds of smoke, egg-white, milk, and varnish. There is no evidence that they do, but no one, so far as I know, has ever taken the trouble to settle the question. It could be done by examining the blue light from the tanks with a polariscope, and also by sinking a black tarpaulin into the tank to cover the white floor and hanging others at the sides. Then if the blue colour were due to light reflected from the white floor and sides traversing repeatedly the clear self-coloured blue water, the blue colour should no longer be visible, for the reflecting surfaces would be covered by the black tarpaulin and little light sent up through the water. But if it were due to a cloud of greatest delicacy in the water—like fine smoke reflecting the blue light rather than the other rays—then the colour should be as intense or more intense when the black background is introduced. I am surprised that some inquirer, younger and more active than I am, does not put the matter to the test of experiment.

On the whole, practically all the facts which we know about "blue water" are consistent with the blue self-colour of water, and not with that of a "blue cloud" in the water. Now that we have porcelain baths of the purest white and of large size, one may often see the strong blue colour of water of great purity in the bath, especially where waves or ripples send to our eyes those rays of light which have taken a more or less horizontal course from side to side of the bath, and have thus been through a large thickness of the pale-coloured fluid. Great masses of clear ice, such as one may study in glaciers, are blue; the "crevasses" which transmit light which has passed through a considerable thickness of ice (as, for instance, in an ice cave), are deep blue; there is no question of a reflection from suspended particles. The green colour which some glaciers show at a little distance is due to the yellow rust—iron oxide—blown on to the surface of the ice and dissolved. Many glaciers or parts of glaciers are quite free from it, and of a splendid indigo blue in their deeper fissures. So, too, as to the sea and lakes. The Blue Grotto or Cavern of the island of Capri, near Naples, is a case in point. All the light which enters it comes through the sea-water and is blue. I was taken to it in a boat rowed by two men. As the boat enters the low mouth of the cavern you have to bend down to avoid knocking your head against the rock. Then you find yourself floating in a vast and lofty chamber the white rocky floor of which is some twenty feet below the surface of the clear water. No light enters the cavern by the low part of the entrance above water. Below the surface it widens and the strong Southern sun shines through the clear water and its light is reflected up into the cave from the bottom. It is blue, and everything in the cave above as well as below the water is suffused with a blue glow—a truly wonderful and fascinating spectacle. In order to get the best effect you must choose an hour when the sun is in a favourable position. Where there is a white bottom at a depth of fifty or a hundred feet, the sea has a fine ultra-marine colour, so long as it is clear. It is often made green by yellow-coloured impurities, either fine iron-stained sediment or by minute living things in the water. The colour of the water of either sea or lakes, when it is clear and overlying great depths (200 fathoms and more), tends to be dark indigo owing to the deficiency of reflected light. But there are enough white particles as a rule to send some of the light, which penetrates the water, upwards again. Even the great ocean has a dark purplish-blue colour, but never the bright blue of clear water in shallow seas with light-coloured or white bottom.

One of the most beautiful exhibitions of the colour of clear water in various thicknesses which I know, is at the entrance of the Rhone into the Lake of Geneva. The thick pale-coloured brownish-white sediment of the river shoots out for a quarter of a mile or more into the dark blue waters of the deep lake, and on a bright sunny day as it subsides reflects the light upwards from different depths through the clear water. Where it has sunk but little the colour is green, owing to the influence of the yellow mud. Farther on it is ultra-marine blue, and then, where it has sunk deeper, we get full indigo tints. The movement of the water and its churning up by the steamers' paddles add to the variety of effects, since the foam of air-bubbles submerged throws up the light through the water. It is not possible to doubt as one watches the admixture of the river and the lake, and the eddies and hanging walls of sediment, that one is floating over a vast depth of magnificent blue self-coloured fluid which is traversed by the sunlight in ways and degrees varying according to its depth and the volume of the pale mud of the in-rushing Rhone and the abundance of fine air-bubbles "churned" into the water by the paddle-wheels of the steamer.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page