Fine as gossamer! Town-bred folks never see it, and do not believe in its existence; they think it is a poetical figment, like “honey-dew.” That, too, is nevertheless a real thing—a honey-like juice poured out by the little plant-lice or aphides. Gossamer is a very real and a most beautiful thing. You may see it on the hill-sides in fine October weather, when the sun is bright but low enough to illuminate the delicate threads and reveal the “veil of silk and silver thin” spread over Nature’s loveliness. The innumerable threads glisten, and are so fine that they shine with iridescent colours, as do the equally delicate soap-bubbles fabricated by men and boys, and from the same cause. When the eye gets accustomed to them and traces them—rippling and glimmering over acres and acres of grass-land—one feels disconcerted, almost awestruck, by the revelation of this vast network of threads. Sometimes the gentle currents of air break them loose from the herbage, and they float at a higher level and envelop the puzzled intruder in an almost invisible entanglement of fairy lines. Sometimes they become felted together in flakes and float or rest as incredibly delicate tissue, woven by unseen mysterious agency. Fig. 47.—A young spider (four times the natural length) raising its body upwards, whilst the four silk threads (gossamer) spun by it float in the air, and so draw out further liquid silk from the spider. They increase in length to three or four yards, when they float upwards, carrying the spider with them. (After McCook.) [Transcriber’s Note: The original image is approximately 4¾ inches (12cm) high and 1¼ inches (3.5cm) wide.] When the slopes of the new golf course at Wimbledon The pretty name “gossamer” has puzzled the etymologists and led to some far-fetched suggestions. That favoured by the authority of the great Oxford dictionary of the English language is that it is a corruption of “Go-summer,” because gossamer appears in autumn and is associated with St. Martin’s summer. This is like saying that the word “cray-fish” refers to fish that live in a “cray” or brook, instead of deriving it from the French word Écrevisse. The Germans call gossamer Sommerweben. But the Latin word for cotton is gossypium; and there is an Italian word, gossampino, which occurs in an English form, gossampine, in the sixteenth century, and means a kind of silk or cotton obtained from the fluffy hairs of a plant called bombax. We also find “gossamer” spelt “gossamire” in English of that date; and it seems to me most likely that an Italian word gossamira, signifying “fairy-cotton” or “magic goose-down,” is the origin of our word. Fig. 48.—View of the lower surface of the head and body of a large Burmese spider, known as Liphistius, to show the spinnerets (3 and 4), which are really reduced or rudimentary legs, and are in this spider retained in their original position, instead of being pushed down to the end of the body, as they are in all other spiders (see Fig. 49, spn), I. to VI., the basal joints of the legs and palps of the head-region; 1, the first abdominal segment; 2, the second; 3 and 4, the legs of the third and fourth abdominal segments, which are the spinnerets; 11, the eleventh abdominal segment—in front of it rudiments of the segments 5 to 10 are seen; an, anus; a, b, inner and outer lobes of the first pair of spinnerets. There are 500 different kinds of spider carefully described as occurring in the British Islands, and about 2000 others from remoter regions. Precisely which of them forms the “gossamer” of our meadows it is difficult to say, as all have the habit of secreting a viscid fluid from one or two pairs of projecting spinning knobs or stalks, which are seen at the hinder end of the body (Figs. 48, 49, and 50). The viscid fluid is poured out by a great number Fig. 49.—Section through the body of a spider to show the spinning organs. h, heart connected by four big veins with b, the lung-bosks or air-gills; f, genital lid; ov, ovary; a, the anus; spn, the three pairs of spinnerets or spinning warts; c, e, and d, the three kinds of glands producing liquid silk, viz., cylindrical, tree-form, and pyriform. These are one thousand in number in the common garden spider, and each has its separate spout or spigot standing up on one of the spinnerets (see next figure). Fig. 50.—One of the two middle spinnerets of the common garden spider (Epeira diadema), to show the three kinds of spouts or spigots (one thousand in all) corresponding to the three kinds of silk-glands. Each kind of “spigot” pours out a different kind and size of thread. sp.c, one of the big spigots of the cylindrical glands; sp.t, middle-sized spigots belonging to the tree-form glands; ss and s.ss, the small-sized spigots of the very numerous pyriform glands. The threads of the garden spider (the Porte-croix of the French, white-cross spider, Epeira diadema, Fig. 51) are fixed by astronomers in their telescopes for the purpose of giving fine lines in the field of view, by which the relative positions of stars may be accurately measured. For a century astronomers desired to make use of such lines of the greatest possible fineness, and procured at first silver wire drawn out to the extreme limit of tenuity attainable with that metal. They also tried hairs (1/500th of an inch thick) and threads of a silk-worm’s cocoon, which are split into two component threads each only 1/2000th of an inch thick. But in 1820 an English instrument maker named Troughton introduced the spider’s line. This can be readily obtained three or four times smaller in breadth than the silk-worm’s thread, and has also advantages in its Fig. 51.—The common garden spider, more correctly called the white cross spider (Epeira diadema): a female drawn a little (one-fifth) larger than life. [Transcriber’s Note: The original image is approximately 1¼ inches (3.5cm) high and 1 inch (2.5cm) wide.] A number of different kinds of the lower animals besides spiders have the power of producing threads. The caterpillars of some moths are especially noted for this, since their thread is familiar to us all as “silk.” It is secreted as a viscid fluid by a pair of tubes opening at the mouth, and hardens on escape. Even some marine creatures—the mussels—produce threads, in this case from a gland or sac in the muscular foot, by means of which they fix themselves to rocks. A very big mussel—the Pinna—called Capo lungo by the Mediterranean fishermen and Capy longy at Plymouth, where they are also found, produces a sufficient quantity of fine horny threads to be used in weaving, and gloves have been made at Genoa from the shell-fish silk. The threads produced by the hardening of the tenacious fluid exuded by these various animals were probably simply protective in origin. The curious caterpillar-like creature Peripatus spits out a viscid fluid when it is disturbed, which hardens into threads, and hopelessly entangles any small enemy which may venture to attack it. Threads of a poisonous nature are thrown out by jelly-fishes, polyps, and sea anemones, and serve them both as defence and as means of paralysing and capturing prey. A later stage in the use of such threads is their “felting” to form a case or tube (as in the sea anemone called Cerianthus), and so their application has gradually developed to the formation of egg-cases, snares, and the wonderful web of the geometric spider, and the countless “flying-lines” of smaller spiders, which make up the mysterious thing we call “gossamer.” As to the limits of the tenuity of the threads of gossamer there are no direct observations. Probably they are often as fine as the 1/16,000th or 1/20,000th of an inch in diameter. The condensation of a very minute quantity of moisture on gossamer threads and spiders’ webs no doubt helps to make them more readily visible to us in October weather than they are in full summer, when such moisture would not condense except in early morning or at sunset. It seems strange that man should have been unable to produce a thread so fine as that of the spider, but this reproach has now been removed. Spun glass is easily obtained 1/1000th of a inch in diameter; but Mr. C. V. Boys, F.R.S., has, by fusing quartz (rock-crystal) by the oxy-hydrogen flame, and drawing it out by means of a small arrow (a straw), discharged from a bow—the near end of the arrow being adherent to a fused droplet of quartz which is held fast—produced threads of great strength and of extraordinary tenuity. The fineness can be regulated by the rapidity with which the drawing is |