Fifty years ago people were very fond of talking about “ozone,” and the word is popularly used nowadays to signify a mysterious attribute of the air of the sea-coast or moorland without its real significance being generally understood. When Sir Oliver Lodge the other day warned people against hurting their nasal passages by sniffing up an unduly strong dose of ozone produced by a special ozone-making apparatus, I am inclined to think that most people who read what he said wondered what “ozone” might be. In the eighteenth century it was noticed that the sparks from a frictional electrical machine are accompanied by a peculiar pungent smell in the air. Many years after that, namely in 1840, the great chemical experimenter, SchÖnbein, the friend and correspondent of Faraday and discoverer of gun-cotton, found that the smell in question is produced by a special gas, which is formed in the air when electric discharges take place. He found that this gas was a powerful oxydiser—would, in fact, oxydise iodide of potassium so as to set free iodine—and thus its presence could be detected by means of paper slips coated with a mixture of starch and iodide of potassium. When they were exposed in air which contained even minute traces of this strange gas they became purple-blue, SchÖnbein wrote sixty papers on ozone—but its real nature was made out by others who succeeded him, chiefly by Andrews, of Belfast, and Tait, of Edinburgh. It turns out that ozone is a condensed form of the elemental gas oxygen—squeezed, as it were, and literally “intensified,” so that three measures of oxygen gas become only two of ozone. It very readily changes back again—two measures of ozone expanding to form three of oxygen. It is produced by the action of an electric discharge upon oxygen gas driven over the discharge and in greatest quantity when that kind of gently-buzzing electric spark which is called “the silent discharge” is used. It can be produced in quantity by passing atmospheric air, or better, pure dry oxygen gas through a glass tube in which such a silent discharge is made to take place. As much as seventeen parts in a hundred of the gas can be thus converted into “ozone,” and some twenty years ago two French chemists succeeded in getting even a larger proportion, The “smell” which old writers had noticed and SchÖnbein had named was thus actually obtained as a distinct blue liquid. It is this which, though present only in minute quantities, gives special oxydising activity to fresh air. When pure, or present even to the small extent of 4 per cent. in air, ozone is a destructive agent, a sort of extra-quality oxygen of triple instead of double power. Indiarubber is rotted and destroyed by it in a few minutes—a sort of combustion or quick oxydation taking place—and it is, of course, dangerous to the softer parts of the human body, such as the air passages and lungs and the eyes—when present in more than a minimal proportion. I believe that no one has yet determined exactly how great a percentage of ozone can be tolerated by a human being in the air taken into the lungs. In ordinary fresh country or sea-coast air only one part by measure in 700,000 has been found to be ozone, that is, 1/7000 per cent. But it is quite likely that much more is occasionally present, since it is very difficult to arrange a satisfactory examination of the air of any locality so as to determine how much ozone it contains. It is said that at higher levels the atmosphere contains more ozone than it does at lower levels. It is not to be wondered at that ozone should thus have attracted general attention and interest as the distinctive and specially active agent present in the pure air of the sea-coast and the mountain-top. People not But it is a remarkable fact that, as with various natural so-called “mineral waters,” so with various “airs” which people find beneficial—no one has yet clearly and decisively shown, in the first place, whether they exert any chemical effect of a special kind on the people who seem to benefit by drinking the one or breathing the other; still less has any one shown what is the particular chemical ingredient of the air or of the water of any given resort which exerts the beneficial effect attributed to that air or that water. The air in different localities differs most obviously and importantly in four particulars, namely, as to whether it is still or windy, whether it is cool or hot relatively to The case is much the same with regard to the natural waters of celebrated resorts. So far as their chemical composition is known, they can be manufactured and applied for drinking or bathing anywhere. But minute quantities of certain gases and other elements may be present in these natural waters and have escaped until now the observation of the chemist, and it is possible, though not demonstrated, that these rare chemical constituents With regard to ozone, there remains something more to be said, namely, in regard to its application, in a far less diluted form than is possible when it is taken into the lungs, to the destruction of putrefying organic matter and putrefactive and disease-producing bacteria. It is now some five or six years since air containing a high percentage of ozone—produced by the action of the electric discharge—was used for the purification of the water-supply of large towns. It is a fact that river water into which such ozone containing air is pumped becomes pure in the highest degree, in consequence of the destruction by the ozone’s oxydising action, both of the bacterial germs always present in vast numbers in river water and of the organic matter on which the bacteria depend. This application of ozone is in use in several large towns for the purification of drinking-water, for which purpose it has very great advantages. It has also been successfully used by Dr. Allen, the director of the Plymouth Marine Laboratory, for keeping the water of the marine aquarium there in a state of purity and well charged with oxygen gas. A similar use has been made of oxygen containing a considerable percentage of ozone by enterprising surgeons for the cleansing of ulcer and abscess. It is clear that such Ozone is not, apparently, in favour or fashion with the general body of medical practitioners at the present day, but possibly further examination and determination of its physiological properties may lead to its receiving more attention in medicine. Already the peroxide of hydrogen—which is more or less correctly described as “ozonised water,” and is used (under the name “Auricomous hair-wash”) to change dark hair by its oxydising action to a golden tint—is used by surgeons for washing out purulent wounds and abscess. Those who use the gas itself only go a step further. Some day we may see a more general use of ozone; on the other hand, it remains to be seen by direct and accurate experiment whether its properties are as valuable to man as we may hope they will prove to be. |