Edward E. Kleinschmidt’s first direct contact with telegraph apparatus was during his employment as a young man, in 1893, by John E. Wright, whose firm had developed and was then manufacturing printing telegraph equipment known as the Wright-Negron bulletin printer for the Havas News Agency in Paris. These printers operated on the step-by-step principle at 30 words per minute. (To attest to their ruggedness, as late as 1951 some of these machines were reported to be still in use!) Five years later, in 1898, Kleinschmidt started an experimental shop at 122 Fulton Street in New York City. A sign over the door read, “Inventions Developed,” and he did experimental and developmental work for various customers (individuals as well as companies—including Western Union) on a time-and-material basis. In the beginning he had a project of his own going—a facsimile telegraph system. He submitted the system to Western Union in 1900 with the suggestion that it might be valuable for customer services, since a customer could write his telegram in longhand and insert the written message in the transmitting unit for transmission in facsimile to the telegraph central. The idea, however, was rejected. At that time the photoelectric cell for scanning the written message and electronic means for amplifying signals had not yet been developed; while the apparatus operated quite well over short circuits, evidently the time had not arrived for commercial facsimile telegraphy. The first telegraph apparatus job for the shop was brought in by Dr. George A. Cardwell, a dentist by profession. It was a partially developed printing telegraph using a three-unit code made up of combinations of plus-minus-high-and-low-voltage pulses (the code we have already discussed). The work for Dr. Cardwell was carried on until 1903 when a working model was completed. It had a typewheel for printing and stops arranged in a circle; magnets under control of relay selection were used to set the stops according to the received code combinations. This arrangement operated well, and on a test over a Western Union circuit from New York to Baltimore it gave satisfactory results. As we have seen, Many customers came to the experimental shop with every type of idea imaginable; vacuum cleaners (The “Vacuna”), elevator signals, some early designs for Elmer Sperry’s gyrocompass were only a few. Kleinschmidt also set up a couple of side-line businesses, one for manufacturing automatic fishing reels under the trade name “Kelso,” another, the Aseptuloid Company, for making vaccination shields (some readers may well remember their childhood vaccinations being protected by a bubble of celluloid). Another customer was George M. Seely, who later was instrumental in bringing Kleinschmidt’s work to the attention of Charles B. Goodspeed and W. S. Moore (they were to become his financial backers—see page 14). Mr. Seely came to the shop in 1906 with a partially developed block system for electric trolley car railways. His plan was to use special devices attached to the trolley pole which would cooperate with stationary electrical controls at certain fixed points along the road. After working along these lines for awhile it became apparent that some inventive work would be required on Kleinschmidt’s part. Seely, in addition to time and material, then offered him a retainer for the assignment of any resulting patents. As plans and studies progressed, a number of railway signaling devices were developed, tested, and patented. A major item was the development of a telephone train dispatching system. A complete set of apparatus was exhibited in operation at the American Association of Railroads Communications Convention held in Los Angeles in 1910. The company name given this venture was the “National Telephone Selector Company,” located at 235 Greenwich Street, New York City. The telephone train dispatching system was installed on the Long Branch Railroad with 30 stations connected with dispatcher headquarters at Red Bank, New Jersey. Another installation was made on the Baltimore and Ohio Railroad in West Virginia, connecting 38 stations with dispatcher headquarters at Fairbanks, West Virginia. Most of the patents assigned to Mr. Seely were eventually sold to the Hall Signal Company. Doing development work for others and assigning patents for a retainer Kleinschmidt’s first keyboard-operated, Morse-code perforator was constructed in 1911 and exhibited to the Western Union Telegraph Company. Mr. G. R. Benjamin, their chief engineer, and Mr. Emmett R. Shute, a vice president, thought well of the machine and, after testing it, gave Kleinschmidt an order for fifty. This order spelled success. To celebrate the event, Kleinschmidt invited his brothers, Bernard, Fred and William, and their families to a dinner party at a distinguished restaurant. Soon thereafter (1913), the Kleinschmidt Electric Company was organized, with the brothers as incorporating officers. The Kleinschmidt Keyboard Perforator came into use by telegraph and cable companies throughout the world where Morse, Wheatstone, or Cable codes were used to transmit telegrams. It was also used with Western Union’s Barclay system which had its own code. The device was later manufactured by Teletype Corporation under the name “Teletype Perforator” and used by the U. S. Government where it served its purpose for high-speed Morse transmission during the war period (see figure 1). In the years 1911 and 1912, the Western Union Telegraph Company, in looking toward higher operating efficiency over their trunk circuits, decided to test the Creed high-speed Morse and the Murray Multiplex, and invited both companies to bring their apparatus to New York. It was on this occasion that Kleinschmidt became acquainted with Mr. F. G. Creed, who, upon observing the Kleinschmidt keyboard perforator at Western Union, was impressed by its performance and said that there would be a good market for it in England, especially as a keyboard punch for the Creed high-speed Continental-Morse-code system. As a result of that conference he asked for ten as a trial order. These perforators were shipped to London in due time and gave satisfactory service. The British Post Office Telegraph evidently had heard about this new perforator and sent a letter to the Kleinschmidt company asking for a demonstration at their London headquarters. Now it happened at that time that Kleinschmidt was extremely busy with the development of a five-unit-code typebar printer for the new Multiplex—and this was urgent since the first model was to be put on competitive test with a typewheel printer submitted by L. M. Potts and the Western Electric typewheel printer which was then in use. Therefore, he felt he should not lose a month or two in this developmental work for a trip to London. So, his answer to this important invitation was that he could not personally bring one of his perforators for exhibit but that he would ask Mr. F. G. Creed to do so. Mr. Creed agreed and set up a formal exhibit for the Post Office engineers; he consequently received an order for twenty Kleinschmidt perforators. Further correspondence with Creed resulted in an order for one hundred and a request that Kleinschmidt come to London the next year (1914) to negotiate a contract to supply his keyboard perforators for the Creed high-speed Morse and to set up a sales agency with Creed for certain territories. While in London in the summer of 1914, Kleinschmidt visited the Managing Director of the Post Office Telegraph at his office to apologize for having had Mr. Creed exhibit the Kleinschmidt perforator instead of bringing it personally as had been requested. The Managing Director replied that Mr. Creed had indeed given a very good operating exhibition of the device and that an order for twenty had been placed with him. “However,” he added, “you know, we sent you an official invitation and expected your appearance with your machine!” To continue: Upon observing the change in systems at Western Union (switching from the Barclay to the Murray Multiplex), the Kleinschmidt Electric Company, who had been experimenting in the development of a telegraph typewriter, built a receiving teletypewriter for the multiplex. It was a magnet-operated, five-unit-code typebar page printer, using the Underwood typewriter mechanisms as a basis; and it was completed in time for test and evaluation at Western Union in competition with the typewheel printers of both L. M. Potts and Western Electric. The Western Electric machine was given the number 1A, Mr. Potts’s, 2A, and the Kleinschmidt printer was 3A. The final outcome of the tests was the selection of the Kleinschmidt model, and the company received an order for five machines, to include a spare, to equip the New York terminal of a New York-to-Boston, four-channel multiplex system. The order was filled in a short time and the machines were put on test. Fig. 1 Kleinschmidt Keyboard-Operated Morse-Code Perforator (this machine returned to author by a customer after being used thirty years!) Fig. 2 3B Typebar Page Printer of Kleinschmidt Electric Companyfrom Museum of Kleinschmidt Division of SCM Corporation Kleinschmidt watched the operation of his machines in service almost every day and was continually on the lookout for possible ways to improve and simplify the apparatus. The tests ran through to completion satisfactorily, and, upon submitting an improved design, numbered the 3B, the Kleinschmidt Electric Company received an order for one hundred typebar page printers. The 3B thereafter became standard apparatus and additional orders were placed as the multiplex system at Western Union expanded (see figure 2). Several years later, Western Union efficiency engineers found that, due to circuit failures, certain parts of messages would have to be repeated. Because this meant retyping the message, they felt, and for other reasons as well, that printing the received messages on tape would be more economical, since corrections could be inserted without repeating the entire message. To meet this requirement, the typebar page printer was redesigned for printing on tape. This was accomplished by using the same selection controls and operating the typebars to print downward on the tape instead of upward against the platen as in the page printer. A tape gummer to attach the tape to a message blank was also designed. The 21A, later No. 22, tape printer was ordered in quantity thereafter. Seeing the possibility of using their typebar page printer for direct-line service, the Kleinschmidt company built a motor-driven send-receive unit having a single contact transmitter which operated under control of a code-perforated tape to transmit seven signals in succession: one start, five code, and a stop signal. The receiving unit had a seven-segment commutator, one segment for start, five for code, and one for stop, and a rotating brush to pick up and transmit the received code signals to the printing unit. This apparatus was installed at the United Press for news distribution to their connected newspapers. Another set was installed at the Louisville and Nashville Railroad for station communications, and still another in New York City at the Equitable Life Assurance Society between their downtown and uptown offices. In connection with the latter installation, the Equitable people asked permission to install the printing apparatus on the telephone line and there was objection from the telephone company. However, after some consideration they finally agreed that the apparatus could be installed but warning that should it create interference with the telephone line it would be removed immediately. As it turned out, the printer operation over this telephone circuit Fig. 3 Kleinschmidt Electric CompanyTeletypewriter Apparatus for Direct-Line Service The Kleinschmidt Electric Company now began to have financial difficulties. Edward Kleinschmidt was borrowing wherever he could. There was no large quantity production and evidently his charges for the apparatus delivered were too low. At any rate, early in 1917, Mr. Seely suggested that he get financial help to carry on and it was here that the following gentlemen entered the picture: Charles B. Goodspeed of the Buckeye Steel Casting Company; Paul M. Benedict, assistant to the president of the C. B. & Q.; Edward Moore, son of Judge Moore of the American Can Company; Eldon Bisbee, a New York lawyer; and one of Mr. Bisbee’s clients, Albert Henry Wiggen, who was then president of the Chase National Bank. With their financial backing, the company was able to continue with further developmental work on simplified and Along about 1919 the Kleinschmidt company had completed a satisfactory keyboard-operated typebar teleprinter for intercommunication systems (see figure 4). The Kleinschmidt Telegraph Typewriter, as it was called, was installed at the New York City News, the Panama Canal, and at the Brooklyn Union Gas Company (fig. 5). In 1922, Edward Kleinschmidt, having learned that Mr. J. E. Wright had discontinued further developments in the telegraph field, proposed the purchase of his patents, stating that this acquisition would broaden the Kleinschmidt company’s patent situation. The proposal was carried, and, after negotiations, Mr. Wright’s patents were bought for 100 shares of the Kleinschmidt Electric Company’s common stock. In 1923, the Kleinschmidt Telegraph Typewriter was exhibited at the 20th Annual Business Show in New York and created a great deal of interest. In 1924, a complete telegraph system was engineered and set up for the Mexican government. (An engineer from Western Union was borrowed to help with this job.) One day, in 1923, after some correspondence with Samuel Samuel & Co., Ltd., through whom the Kleinschmidt company received orders from Japan for the Morse code keyboard perforator, the Japanese Telegraph Administration sent one of their telegraph engineers, Mr. Y. Okomoto, to the company’s headquarters to assist in working out a keyboard arrangement of Japanese characters for a simplified alphabet consisting of 88 characters which the Japanese Telegraph Administration had devised. The five-unit code could not be used since only 64 selective positions could be had. So the telegraph typewriter mechanisms were changed to six-unit-code operation, which worked out very well. The Kleinschmidt company, and later Morkrum-Kleinschmidt, received continuing orders for the six-unit-code telegraph typewriters. Fig. 4 Kleinschmidt Electric Company Telegraph Typewriter(keyboard-operated typebar teleprinter) Fig. 5 Kleinschmidt Telegraph Typewriters(installation at Brooklyn Union Gas Co.) |