TOURBILLIONS. [A]

Previous

A tourbillion, so called from the French word for whirlwind, is a case made to rotate and ascend at the same time, forming a spiral of fire, and ending in the shape of an umbrella.

To Make a Tourbillion.

Roll the case like a roman candle case, but gauge it to the thickness of a rocket case. Let the inner diameter be 6/8; the outer 9/8; the length of the case 71/4 inches, fig. 43. To charge the case, have a mould, as directed for port-fires; and let the tenon rise exactly 3/8 of an inch up the case. Put in a little composition at a time, and mallet it as firmly as possible, till within exactly 3/8 of an inch of the top of the case; so that there will be a vacancy of 3/8 of an inch, at each end. Fill each of these ends flush with plaster of paris. It is, better, too, if you can manage to fill the middle half-inch of the case with plaster of paris. It can be effected with care, and will hold the screw, hereafter to be described, more firmly.

Construct a wooden box, fig. 44, consisting of a bottom and two sides only, firmly screwed together. Each of the pieces of wood is to be 71/4 inches long, and 1/2 an inch thick. The internal breadth of the box is to be exactly 9/8 of an inch; and its internal depth exactly 41/2/8 or 9/16, so that when the tourbillion is laid evenly in it, and pressed down to the bottom, half of the case will be in it, and half out of it. At a point b, fig. 44, on the top of the side, half an inch from a, make an ink mark: and, at a point d, half an inch from c, make another ink mark. Fig. 45 is the bottom of the box. At a point w, 5/8 of an inch from the end; and, at a point z, 5/8 of an inch from the other end, make holes with a fine bradawl, truly, in a line down the middle of the wood, as between side and side. The distance w z is 6 inches; divide it into 3 equal parts, in the points x and y, two inches asunder. Bisect x y in the point s. Procure 5 carpet pins, fig. 47: they will, probably, be 3/4 of an inch long. Drive them through the holes w, x, s, y, z, inverting the box for the purpose, so that they shall stand bolt upright in the box. Now screw, or nail a piece of wood over the bottom of the box, entirely to cover it, to prevent the carpet pins from getting displaced. It will be seen, that, if the tourbillion be now laid evenly in the box, and pressed down till it rests on the bottom, the projecting pins will make 5 holes, in the under part of the case. While it is thus lying, with a stiletto, such as used by sempstresses, for making eyelet holes, prick the side of the case over the line b, of fig. 44; and, also, over the point d. There will now be 7 holes; 5 underneath, 1 to the right, and 1 to the left: the latter are the places for the whirlers, or holes of rotation: 4 underneath, for the lifters, or holes of ascension; the centre one, s, receives a nail or screw. Take a bradawl, fig. 49, 3/16 of an inch diameter; and slip over it a shield, consisting of a piece of wood with a central hole up it, like a pop-gun, of such a length, that, when it is slipped on, only 1/4 of an inch of the bradawl protrudes; or, instead of a bradawl, fix in a handle, a wire of equal length, namely 1/4 of an inch, and file it to a point. Push this into all the holes, except s, making 4 holes underneath, and 2 horizontal holes, one left, one right: all these holes will be exactly of the same depth, on account of the shield: see that they are bored perfectly true, the horizontals exactly 90 degrees above the others, or 1/4 of the circumference.

The next thing required, is a piece of hooping, or curved stick, about 6/8 of an inch broad, and as long as the case, 71/4 inches. In the centre of this, bore a hole, and countersink it; then, with a screw, an inch and a quarter long, screw the hooping, at right angles, on the bottom of the case, through the point s of fig. 45, which must be enlarged to receive the screw. A touch of glue may still farther hold the wood in position. It will now assume the shape of a cross, like figs. 50 and 51. Fig. 50 shows the under side of the case; fig. 51 the upper. From w to x lead a bit of naked match; push the ends into both holes, and secure with a little wetted meal, pressed in with a knife. Do the same with y and z. Paste a piece of double-crown, 3/4 of an inch broad, and of sufficient length, and cover each of the two pieces of match, with two layers of the paper. Turn it over, like to fig. 51; connect the holes a and b with a bit of naked match; and, under the centre of it, slip another piece of naked match, having a piece of touch-paper round the protruding end: cover the match with two thicknesses of pasted paper, in the same manner as the under holes. The tourbillion is now complete. See that it will balance, and swing round easily, when laid upon a level surface. The proper way to fire it, is from a flat sheet of iron, or a flagstone. Light the touch paper; the fire will communicate to the side holes, and set it in rotation. As soon as 1/8 of an inch of fuse has burnt from each end, and the piece has got well into action, the 4 under holes will catch, and cause it to ascend.

Instead of this mode of making a tourbillion, some charge it with an inch of solidly rammed clay, in the middle; fasten the stick, by crossing it with binding-wire; bore a hole through the middle of it, and of the clay, and slip it over a tapering-wire, standing upright in a block, like the spindle of a rocket. Four holes only are then used; two of rotation, and two of ascension; and the whole are fired at once, the match starting from one of the under holes, going to the side hole; over, across, to the other side hole, and on to the other under hole.

Instead of making them with clay in the middle, there is yet a better method of having two cases, each about 4 inches long; and gluing, or fastening them with tin-tacks on a centre-piece, turned with a tenon at each end, fig. 52; two balancing arms, one on each side, must then be fixed to the centre-piece.

In a windmill, as is well known, the vanes, or sails, are set at an angle. There is a toy, made of two slips of tin, forming a cross, and set at an angle, sloping upwards, called the flying dutchman; this, when spun with a string, from a handle like a humming-top, flies up into the air, on escaping from the string. Steel Fliers, with two vanes, are used by sportsmen to practise shooting flying. Small balloons, some years ago, in a room in the Polytechnic Institution, free from a current of air, were guided or driven by a similar contrivance, moved by clockwork. The screw-propeller of a ship acts on the same principle. I think it possible that, if two vanes were fixed in the central piece of wood, set at an upward angle of 10, 15, or 20 degrees from the horizontal, they might assist the ascension, and so cause the tourbillion to reach a greater height; or, the vanes alone might cause it to rise, upon 4 side holes, two to the left, and two to the right, causing it to rotate. The design is shown at fig. 54, the shape of the vane at fig. 53. I have not yet tried it, so offer it only as a suggestion.

[A] Tourbillion, from tourbillon, like postillion, from postillon, the i being inserted to approximate the pronunciation of the French. In pavilion, from pavillon, and vermilion, from vermillon, one l is dropped; so in battalion, from bataillon; while medallion, from medaillon, retains the ll.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page